Dealing with Imprecise Inputs in a Fuzzy Rule-Based System using an Implication-based Rule Model

Author(s):  
Lluís Godo ◽  
Sandra Sandri
2014 ◽  
Vol 8 (3) ◽  
pp. 335-356 ◽  
Author(s):  
Andreiwid Sheffer Corrêa ◽  
Alexandre de Assis Mota ◽  
Lia Toledo Moreira Mota ◽  
Pedro Luiz Pizzigatti Corrêa

Purpose – The purpose of this study is to present a system called NEBULOSUS, which is a fuzzy rule-based expert system for assessing the maturity level of an agency regarding technical interoperability. Design/methodology/approach – The study introduces the use of artificial intelligence and fuzzy logic to deal with the imprecision and uncertainty present in the assessment process. To validate the system proposed and demonstrate its operation, the study takes into account the Brazilian technical interoperability maturity model, based on the Brazilian Government Interoperability Framework (GIF). Findings – With the system proposed and its methodology, it could be possible to increase the assessment process to management level and to provide decision-making support without worrying about technical details that make it complex and time-consuming. Moreover, NEBULOSUS is a standalone system that offers an easy-to-use, open and flexible structuring database that can be adapted by governments throughout the world. It will serve as a tool and contribute to governments’ expectations for continuous improvement of their technologies. Originality/value – This study contributes toward filling a gap in general interoperability architectures, which is a means to provide an objective method to evaluate GIF adherence by governments. The proposed system allows governments to configure their technical models and GIF to assess information and communication technology resources.


2012 ◽  
Vol 66 (8) ◽  
pp. 1766-1773 ◽  
Author(s):  
J. Yazdi ◽  
S. A. A. S. Neyshabouri

Population growth and urbanization in the last decades have increased the vulnerability of properties and societies in flood-prone areas. Vulnerability analysis is one of the main factors used to determine the necessary measures of flood risk reduction in floodplains. At present, the vulnerability of natural disasters is analyzed by defining the various physical and social indices. This study presents a model based on a fuzzy rule-based system to address various ambiguities and uncertainties from natural variability, and human knowledge and preferences in vulnerability analysis. The proposed method is applied for a small watershed as a case study and the obtained results are compared with one of the index approaches. Both approaches present the same ranking for the sub-basin's vulnerability in the watershed. Finally, using the scores of vulnerability in different sub-basins, a vulnerability map of the watershed is presented.


2020 ◽  
Vol 10 (2) ◽  
pp. 1-14
Author(s):  
Sujatha A ◽  
L Govindaraju ◽  
N Shivakumar

2013 ◽  
pp. 498-512
Author(s):  
Erik Cuevas ◽  
Daniel Zaldivar ◽  
Marco Perez-Cisneros

Reliable corner detection is an important task in pattern recognition applications. In this chapter an approach based on fuzzy-rules to detect corners even under imprecise information is presented. The uncertainties arising due to various types of imaging defects such as blurring, illumination change, noise, et cetera. Fuzzy systems are well known for efficient handling of impreciseness. In order to handle the incompleteness arising due to imperfection of data, it is reasonable to model corner properties by a fuzzy rule-based system. The robustness of the proposed algorithm is compared with well known conventional detectors. The performance is tested on a number of benchmark test images to illustrate the efficiency of the algorithm in noise presence.


Sign in / Sign up

Export Citation Format

Share Document