Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures: Graphene, Fullerenes, Carbon Nanotubes, and Their Derivatives

Author(s):  
Tandabany C. Dinadayalane ◽  
Jerzy Leszczynski
2013 ◽  
Vol 2 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Susanna Bosi ◽  
Alessandra Fabbro ◽  
Laura Ballerini ◽  
Maurizio Prato

AbstractOwing to their peculiar physical and chemical properties, carbon nanotubes are intensively studied for many different applications, including those in the biomedical field. Carbon nanotubes are electrically conductive, elastic but mechanically resistant and these features, among others, have made them an ideal material for therapeutic applications at the neural tissue interface. The major recent advances in the study of carbon nanotube-based materials aimed at nerve tissue regeneration and functional recovery are reviewed here.


Author(s):  
Jiabei Guo ◽  
Hui Jiang ◽  
Yan Teng ◽  
Yue Xiong ◽  
Zhuhui Chen ◽  
...  

Magnetic carbon nanotubes (MCNTs), consisting of carbon nanotubes (CNTs) and magnetic nanoparticles (MNPs), have enormous exploration and application potentials due to their superior physical and chemical properties, such as unique...


2019 ◽  
Vol 23 ◽  
pp. 75-81
Author(s):  
Ponnusamy Senthil Kumar ◽  
G. Janet Joshiba

The discovery of carbon nanotubes is one of the remarkable achievement in the field of material science and it is a great advancement of Nanotechnology. A carbon nanotube is an expedient material used in several domains and paves way for the welfare of humans in many ways. Carbon nanotubes are nanosized tubes made from graphitic carbons and it is well known for its exclusive physical and chemical properties. The market demand for the nanotubes has increased progressively due to its size dependent, structure and mechanical properties. The carbon nanotubes possess high tensile strength and it is also found to be the durable fibre ever known. It is also found to possess exceptional electrical properties. The carbon nanotube composites have an excellent young’s modulus and higher tensile strength same as graphite carbon. This review plots the properties of carbon nanotubes and portrays the planning and properties of carbon nanotube composites. The wide application of carbon nanotube composites is also explained.


MRS Advances ◽  
2017 ◽  
Vol 3 (1-2) ◽  
pp. 1-11
Author(s):  
Chengzhi Luo ◽  
Chunxu Pan

ABSTRACTCarbon nanotubes (CNTs) possess superior mechanical, physical and chemical properties that make them ideal candidates for making sensors. However, challenges restricting their widespread applications in sensors still exist. To make the CNTs-based sensors own higher performance, nature has offered us with scientific and technological clues from the formation of biological composites using common organic components via naturally mild approaches. This paper reviews the recent progress on the bio-inspired synthesis of the CNTs-based sensors and their unique structures and novel properties.


2020 ◽  
pp. 095400832095803
Author(s):  
Juliane Glória ◽  
Walter Brito ◽  
Ariamna Gandarilla ◽  
Duniesky Larrude ◽  
Jacqueline Carlos ◽  
...  

Since their discovery, carbon nanotubes were used for numerous applications in the most diverse knowledge areas. However, the lack of solubility of these molecules in aqueous media compromises their beneficial properties for certain applications. Several methods to solubilize carbon nanotubes are described, however, depending on the intended application, the impact that the solubilization has on the physical and chemical properties needs to be considered. In the present study, a simple methodology is described that utilizes polyvinylpyrrolidone combined with sonication and centrifugation to solubilize multiwalled carbon nanotubes. Proteins were coupled to the surface of the solubilized products and characterized using various spectroscopic and electron microscopic techniques, evaluating the characteristics and integrity of the nanoparticle after the process. It was successfully demonstrated that nanotubes can be solubilized through a simple technique, without compromising their chemical characteristics, which makes them suitable materials for use in biomedical applications, due to their biocompatibility and lack of toxicity, among others.


2015 ◽  
Vol 6 ◽  
pp. 2263-2271 ◽  
Author(s):  
Claudia Struzzi ◽  
Mattia Scardamaglia ◽  
Axel Hemberg ◽  
Luca Petaccia ◽  
Jean-François Colomer ◽  
...  

Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.


Sign in / Sign up

Export Citation Format

Share Document