Arsenic Tolerance Mechanisms in Plants and Potential Role of Arsenic Hyperaccumulating Plants for Phytoremediation of Arsenic-Contaminated Soil

Author(s):  
Monika Patel ◽  
Asha Kumari ◽  
Asish Kumar Parida
2016 ◽  
Vol 43 (7) ◽  
pp. 643 ◽  
Author(s):  
Mohammad Reza Karbaschi ◽  
Brett Williams ◽  
Acram Taji ◽  
Sagadevan G. Mundree

Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72 h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress, (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection, (iii) retention of ~70% chlorophyll in the desiccated state, (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively, (v) a sharp increase in electrolyte leakage during dehydration, and (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.


HortScience ◽  
2019 ◽  
Vol 54 (7) ◽  
pp. 1249-1257 ◽  
Author(s):  
El-Sayed Mohamed El-Mahrouk ◽  
Eman Abdel-Hakim Eisa ◽  
Mahmoud Abdelnaby Hegazi ◽  
Mohamed El-Sayed Abdel-Gayed ◽  
Yaser Hassan Dewir ◽  
...  

Phytoremediation is an environmentally friendly and effective method of reducing contaminating ions to very low levels. In this study, the effects of different concentrations of cadmium (Cd), copper (Cu), and lead (Pb) on vegetative growth and the chemical and biochemical compositions of Salix mucronata as well as the potential for phytoextraction of these metals by plant organs were investigated. S. mucronata had the highest survival percentage (100%) in the presence of CdCl2, CuCl2, and Pb acetate up to 80, 200, and 850 mg·kg−1 in soil, respectively. A negative influence of these metals on vegetative and chemical parameters was observed relative to the control plants. The potential role of antioxidant enzymes in protecting plants from oxidative injury was examined by analyzing the antioxidant enzyme activities of plants grown in contaminated and control soils. Enzymatic activities and electrolyte leakage were higher in the plants grown in soil with increasing heavy metals than in the control plants. The bioconcentrating efficiency of Cd, Cu, and Pb in plant organs was estimated to be medium [bioconcentration factor (BCF) of 1–0.1]; an exception was the BCF of Cu in the roots, which was estimated to be intensive (BCF < 1). Concentrations of 60 mg·kg−1 CdCl2, 50 mg·kg−1 CuCl2, and 650 mg·kg−1 Pb acetate caused significantly higher translocation compared with other levels of each pollutant. The biomass tolerance index was less than 1. Additionally, S. mucronata accumulated Cd, Cu, and Pb in the following order: roots > stems > leaves. Therefore, the risk of contamination through leaf fall can be minimized. Therefore, S. mucronata could be a good candidate for phytoremediation of Cd-, Cu-, and Pb-contaminated soil.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document