A Fundamental Review on Hyperspectral Segmentation Algorithms

2021 ◽  
pp. 165-185
Author(s):  
Sneha ◽  
Ajay Kaul
2020 ◽  
Vol 64 (4) ◽  
pp. 40412-1-40412-11
Author(s):  
Kexin Bai ◽  
Qiang Li ◽  
Ching-Hsin Wang

Abstract To address the issues of the relatively small size of brain tumor image datasets, severe class imbalance, and low precision in existing segmentation algorithms for brain tumor images, this study proposes a two-stage segmentation algorithm integrating convolutional neural networks (CNNs) and conventional methods. Four modalities of the original magnetic resonance images were first preprocessed separately. Next, preliminary segmentation was performed using an improved U-Net CNN containing deep monitoring, residual structures, dense connection structures, and dense skip connections. The authors adopted a multiclass Dice loss function to deal with class imbalance and successfully prevented overfitting using data augmentation. The preliminary segmentation results subsequently served as the a priori knowledge for a continuous maximum flow algorithm for fine segmentation of target edges. Experiments revealed that the mean Dice similarity coefficients of the proposed algorithm in whole tumor, tumor core, and enhancing tumor segmentation were 0.9072, 0.8578, and 0.7837, respectively. The proposed algorithm presents higher accuracy and better stability in comparison with some of the more advanced segmentation algorithms for brain tumor images.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jimena Olveres ◽  
Erik Carbajal-Degante ◽  
Boris Escalante-Ramírez ◽  
Enrique Vallejo ◽  
Carla María García-Moreno

Segmentation tasks in medical imaging represent an exhaustive challenge for scientists since the image acquisition nature yields issues that hamper the correct reconstruction and visualization processes. Depending on the specific image modality, we have to consider limitations such as the presence of noise, vanished edges, or high intensity differences, known, in most cases, as inhomogeneities. New algorithms in segmentation are required to provide a better performance. This paper presents a new unified approach to improve traditional segmentation methods as Active Shape Models and Chan-Vese model based on level set. The approach introduces a combination of local analysis implementations with classic segmentation algorithms that incorporates local texture information given by the Hermite transform and Local Binary Patterns. The mixture of both region-based methods and local descriptors highlights relevant regions by considering extra information which is helpful to delimit structures. We performed segmentation experiments on 2D images including midbrain in Magnetic Resonance Imaging and heart’s left ventricle endocardium in Computed Tomography. Quantitative evaluation was obtained with Dice coefficient and Hausdorff distance measures. Results display a substantial advantage over the original methods when we include our characterization schemes. We propose further research validation on different organ structures with promising results.


Author(s):  
P. Salgado ◽  
T.-P. Azevedo Perdicoúlis

Medical image techniques are used to examine and determine the well-being of the foetus during pregnancy. Digital image processing (DIP) is essential to extract valuable information embedded in most biomedical signals. After, intelligent segmentation methods, based on classifier algorithms, must be applied to identify structures and relevant features from previous data. The success of both is essential for helping doctors to identify adverse health conditions from the medical images. To obtain easy and reliable DIP methods for foetus images in real-time, at different gestational ages, aware pre-processing needs to be applied to the images. Thence, some data features are extracted that are meant to be used as input to the segmentation algorithms presented in this work. Due to the high dimension of the problems in question, assemblage of the data is also desired. The segmentation of the images is done by revisiting the K-nn algorithm that is a conventional nonparametric classifier. Besides its simplicity, its power to accomplish high classification results in medical applications has been demonstrated. In this work two versions of this algorithm are presented (i) an enhancement of the standard version by aggregating the data apriori and (ii) an iterative version of the same method where the training set (TS) is not static. The procedure is demonstrated in two experiments, where two images of different technologies were selected: a magnetic resonance image and an ultrasound image, respectively. The results were assessed by comparison with the K-means clustering algorithm, a well-known and robust method for this type of task. Both described versions showed results close to 100% matching with the ones obtained by the validation method, although the iterative version displays much higher reliability in the classification.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
João Gaspar Ramôa ◽  
Vasco Lopes ◽  
Luís A. Alexandre ◽  
S. Mogo

AbstractIn this paper, we propose three methods for door state classification with the goal to improve robot navigation in indoor spaces. These methods were also developed to be used in other areas and applications since they are not limited to door detection as other related works are. Our methods work offline, in low-powered computers as the Jetson Nano, in real-time with the ability to differentiate between open, closed and semi-open doors. We use the 3D object classification, PointNet, real-time semantic segmentation algorithms such as, FastFCN, FC-HarDNet, SegNet and BiSeNet, the object detection algorithm, DetectNet and 2D object classification networks, AlexNet and GoogleNet. We built a 3D and RGB door dataset with images from several indoor environments using a 3D Realsense camera D435. This dataset is freely available online. All methods are analysed taking into account their accuracy and the speed of the algorithm in a low powered computer. We conclude that it is possible to have a door classification algorithm running in real-time on a low-power device.


Author(s):  
Yue Sun ◽  
Kun Gao ◽  
Zhengwang Wu ◽  
Guannan Li ◽  
Xiaopeng Zong ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1975
Author(s):  
Lin Wang ◽  
Yuzhen Zhou ◽  
Qiao Hu ◽  
Zhenghong Tang ◽  
Yufeng Ge ◽  
...  

Woody plant encroachment into grasslands ecosystems causes significantly ecological destruction and economic losses. Effective and efficient management largely benefits from accurate and timely detection of encroaching species at an early development stage. Recent advances in unmanned aircraft systems (UAS) enabled easier access to ultra-high spatial resolution images at a centimeter level, together with the latest machine learning based image segmentation algorithms, making it possible to detect small-sized individuals of target species at early development stage and identify them when mixed with other species. However, few studies have investigated the optimal practical spatial resolution of early encroaching species detection. Hence, we investigated the performance of four popular semantic segmentation algorithms (decision tree, DT; random forest, RF; AlexNet; and ResNet) on a multi-species forest classification case with UAS-collected RGB images in original and down-sampled coarser spatial resolutions. The objective of this study was to explore the optimal segmentation algorithm and spatial resolution for eastern redcedar (Juniperus virginiana, ERC) early detection and its classification within a multi-species forest context. To be specific, firstly, we implemented and compared the performance of the four semantic segmentation algorithms with images in the original spatial resolution (0.694 cm). The highest overall accuracy was 0.918 achieved by ResNet with a mean interaction over union at 85.0%. Secondly, we evaluated the performance of ResNet algorithm with images in down-sampled spatial resolutions (1 cm to 5 cm with 0.5 cm interval). When applied on the down-sampled images, ERC segmentation performance decreased with decreasing spatial resolution, especially for those images coarser than 3 cm spatial resolution. The UAS together with the state-of-the-art semantic segmentation algorithms provides a promising tool for early-stage detection and localization of ERC and the development of effective management strategies for mixed-species forest management.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 275
Author(s):  
Igor A. Bessmertny ◽  
Xiaoxi Huang ◽  
Aleksei V. Platonov ◽  
Chuqiao Yu ◽  
Julia A. Koroleva

Search engines are able to find documents containing patterns from a query. This approach can be used for alphabetic languages such as English. However, Chinese is highly dependent on context. The significant problem of Chinese text processing is the missing blanks between words, so it is necessary to segment the text to words before any other action. Algorithms for Chinese text segmentation should consider context; that is, the word segmentation process depends on other ideograms. As the existing segmentation algorithms are imperfect, we have considered an approach to build the context from all possible n-grams surrounding the query words. This paper proposes a quantum-inspired approach to rank Chinese text documents by their relevancy to the query. Particularly, this approach uses Bell’s test, which measures the quantum entanglement of two words within the context. The contexts of words are built using the hyperspace analogue to language (HAL) algorithm. Experiments fulfilled in three domains demonstrated that the proposed approach provides acceptable results.


2011 ◽  
Vol 07 (01) ◽  
pp. 155-171 ◽  
Author(s):  
H. D. CHENG ◽  
YANHUI GUO ◽  
YINGTAO ZHANG

Image segmentation is an important component in image processing, pattern recognition and computer vision. Many segmentation algorithms have been proposed. However, segmentation methods for both noisy and noise-free images have not been studied in much detail. Neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interaction with different ideational spectra. However, neutrosophic set needs to be specified and clarified from a technical point of view for a given application or field to demonstrate its usefulness. In this paper, we apply neutrosophic set and define some operations. Neutrosphic set is integrated with an improved fuzzy c-means method and employed for image segmentation. A new operation, α-mean operation, is proposed to reduce the set indeterminacy. An improved fuzzy c-means (IFCM) is proposed based on neutrosophic set. The computation of membership and the convergence criterion of clustering are redefined accordingly. We have conducted experiments on a variety of images. The experimental results demonstrate that the proposed approach can segment images accurately and effectively. Especially, it can segment the clean images and the images having different gray levels and complex objects, which is the most difficult task for image segmentation.


Sign in / Sign up

Export Citation Format

Share Document