segmentation algorithms
Recently Published Documents


TOTAL DOCUMENTS

760
(FIVE YEARS 237)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Ozgun Akcay ◽  
Ahmet Cumhur Kinaci ◽  
Emin Ozgur Avsar ◽  
Umut Aydar

In geospatial applications such as urban planning and land use management, automatic detection and classification of earth objects are essential and primary subjects. When the significant semantic segmentation algorithms are considered, DeepLabV3+ stands out as a state-of-the-art CNN. Although the DeepLabV3+ model is capable of extracting multi-scale contextual information, there is still a need for multi-stream architectural approaches and different training approaches of the model that can leverage multi-modal geographic datasets. In this study, a new end-to-end dual-stream architecture that considers geospatial imagery was developed based on the DeepLabV3+ architecture. As a result, the spectral datasets other than RGB provided increments in semantic segmentation accuracies when they were used as additional channels to height information. Furthermore, both the given data augmentation and Tversky loss function which is sensitive to imbalanced data accomplished better overall accuracies. Also, it has been shown that the new dual-stream architecture using Potsdam and Vaihingen datasets produced 88.87% and 87.39% overall semantic segmentation accuracies, respectively. Eventually, it was seen that enhancement of the traditional significant semantic segmentation networks has a great potential to provide higher model performances, whereas the contribution of geospatial data as the second stream to RGB to segmentation was explicitly shown.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Cuijuan Wang

This article is dedicated to the research of video motion segmentation algorithms based on optical flow equations. First, some mainstream segmentation algorithms are studied, and on this basis, a segmentation algorithm for spectral clustering analysis of athletes’ physical condition in training is proposed. After that, through the analysis of the existing methods, compared with some algorithms that only process a single frame in the video, this article analyzes the continuous multiple frames in the video and extracts the continuous multiple frames of the sampling points through the Lucas-Kanade optical flow method. We densely sampled feature points contain as much motion information as possible in the video and then express this motion information through trajectory description and finally achieve segmentation of moving targets through clustering of motion trajectories. At the same time, the basic concepts of image segmentation and video motion target segmentation are described, and the division standards of different video motion segmentation algorithms and their respective advantages and disadvantages are analyzed. The experiment determines the initial template by comparing the gray-scale variance of the image, uses the characteristic optical flow to estimate the search area of the initial template in the next frame, reduces the matching time, judges the template similarity according to the Hausdorff distance, and uses the adaptive weighted template update method for the templates with large deviations. The simulation results show that the algorithm can achieve long-term stable tracking of moving targets in the mine, and it can also achieve continuous tracking of partially occluded moving targets.


2021 ◽  
Vol 11 (6) ◽  
pp. 7968-7973
Author(s):  
M. Kazmi ◽  
F. Yasir ◽  
S. Habib ◽  
M. S. Hayat ◽  
S. A. Qazi

Urdu Optical Character Recognition (OCR) based on character level recognition (analytical approach) is less popular as compared to ligature level recognition (holistic approach) due to its added complexity, characters and strokes overlapping. This paper presents a holistic approach Urdu ligature extraction technique. The proposed Photometric Ligature Extraction (PLE) technique is independent of font size and column layout and is capable to handle non-overlapping and all inter and intra overlapping ligatures. It uses a customized photometric filter along with the application of X-shearing and padding with connected component analysis, to extract complete ligatures instead of extracting primary and secondary ligatures separately. A total of ~ 2,67,800 ligatures were extracted from scanned Urdu Nastaliq printed text images with an accuracy of 99.4%. Thus, the proposed framework outperforms the existing Urdu Nastaliq text extraction and segmentation algorithms. The proposed PLE framework can also be applied to other languages using the Nastaliq script style, languages such as Arabic, Persian, Pashto, and Sindhi.


2021 ◽  
Author(s):  
Sook-Lei Liew ◽  
Bethany Lo ◽  
Miranda R. Donnelly ◽  
Artemis Zavaliangos-Petropulu ◽  
Jessica N. Jeong ◽  
...  

AbstractAccurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in rehabilitation research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires significant neuroanatomical expertise. We previously released a large, open-source dataset of stroke T1w MRIs and manually segmented lesion masks (ATLAS v1.2, N=304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N=955), a larger dataset of T1w stroke MRIs and manually segmented lesion masks that includes both training (public) and test (hidden) data. Algorithm development using this larger sample should lead to more robust solutions, and the hidden test data allows for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke rehabilitation research.


2021 ◽  
Author(s):  
Georgia Loukatou ◽  
Sabine Stoll ◽  
Damián Ezequiel Blasi ◽  
Alejandrina Cristia

How can infants detect where words or morphemes start and end in the continuous stream of speech? Previous computational studies have investigated this question mainly for English, where morpheme and word boundaries are often isomorphic. Yet in many languages, words are often multimorphemic, such that word and morpheme boundaries do not align. Our study employed corpora of two languages that differ in the complexity of inflectional morphology, Chintang (Sino-Tibetan) and Japanese (in Experiment 1), as well as corpora of artificial languages ranging in morphological complexity, as measured by the ratio and distribution of morphemes per word (in Experiments 2 and 3). We used two baselines and three conceptually diverse word segmentation algorithms, two of which rely purely on sublexical information using distributional cues, and one that builds a lexicon. The algorithms’ performance was evaluated on both word- and morpheme-level representations of the corpora.Segmentation results were better for the morphologically simpler languages than for the morphologically more complex languages, in line with the hypothesis that languages with greater inflectional complexity could be more difficult to segment into words. We further show that the effect of morphological complexity is relatively small, compared to that of algorithm and evaluation level. We therefore recommend that infant researchers look for signatures of the different segmentation algorithms and strategies, before looking for differences in infant segmentation landmarks across languages varying in complexity.


2021 ◽  
pp. 1-7
Author(s):  
T.H. Nguyen ◽  
T.L. Nguyen ◽  
A.D. Afanasiev ◽  
T.L. Pham

Pavement defect detection and classification systems based on machine learning algorithms are already very advanced and are increasingly demonstrating their outstanding advantages. One of the most important steps in the processing is image segmentation. In this paper, some image segmentation algorithms used in practice are presented, compared and evaluated. The advantages and disadvantages of each algorithm are evaluated and compared based on the criteria PA, MPA, F1. We propose a method to optimize the process of image segmentation of pavement defects using a combination of Markov Random Fields and graph theory. Experiments were conducted on 3 datasets from Portugal, Russia and Vietnam. Empirical results show that the segmentation of pavement defects is more accurate and effective when the two methods are combined.


Author(s):  
Junyi Wu ◽  
Yan Huang ◽  
Qiang Wu ◽  
Zhipeng Gao ◽  
Jianqiang Zhao ◽  
...  

The task of person re-identification (re-ID) is to find the same pedestrian across non-overlapping camera views. Generally, the performance of person re-ID can be affected by background clutter. However, existing segmentation algorithms cannot obtain perfect foreground masks to cover the background information clearly. In addition, if the background is completely removed, some discriminative ID-related cues (i.e., backpack or companion) may be lost. In this article, we design a dual-stream network consisting of a Provider Stream (P-Stream) and a Receiver Stream (R-Stream). The R-Stream performs an a priori optimization operation on foreground information. The P-Stream acts as a pusher to guide the R-Stream to concentrate on foreground information and some useful ID-related cues in the background. The proposed dual-stream network can make full use of the a priori optimization and guided-learning strategy to learn encouraging foreground information and some useful ID-related information in the background. Our method achieves Rank-1 accuracy of 95.4% on Market-1501, 89.0% on DukeMTMC-reID, 78.9% on CUHK03 (labeled), and 75.4% on CUHK03 (detected), outperforming state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document