scholarly journals Kernel Fisher Envelope Surface for Pattern Recognition

Author(s):  
Jing Wang ◽  
Jinglin Zhou ◽  
Xiaolu Chen

AbstractIt is found that the batch process is more difficultly monitored compared with the continuous process, due to its complex features, such as nonlinearity, non-stable operation, unequal production cycles, and most variables only measured at the end of batch. Traditional methods for batch process, such as multiway FDA (Chen 2004) and multi-model FDA (He et al. 2005), cannot solve these issues well. They require complete batch data only available at the end of a batch. Therefore, the complete batch trajectory must be estimated real time, or alternatively only the measured values at the current moment are used for online diagnosis. Moreover, the above approaches do not consider the problem of inconsistent production cycles.

Author(s):  
Reshma P ◽  
Muneer VK ◽  
Muhammed Ilyas P

Face recognition is a challenging task for the researches. It is very useful for personal verification and recognition and also it is very difficult to implement due to all different situation that a human face can be found. This system makes use of the face recognition approach for the computerized attendance marking of students or employees in the room environment without lectures intervention or the employee. This system is very efficient and requires very less maintenance compared to the traditional methods. Among existing methods PCA is the most efficient technique. In this project Holistic based approach is adapted. The system is implemented using MATLAB and provides high accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3635 ◽  
Author(s):  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Yanjie Li ◽  
Wenyuan Xu

As a critical component in the smart grid, the Distribution Terminal Unit (DTU) dynamically adjusts the running status of the entire smart grid based on the collected electrical parameters to ensure the safe and stable operation of the smart grid. However, as a real-time embedded device, DTU has not only resource constraints but also specific requirements on real-time performance, thus, the traditional anomaly detection method cannot be deployed. To detect the tamper of the program running on DTU, we proposed a power-based non-intrusive condition monitoring method that collects and analyzes the power consumption of DTU using power sensors and machine learning (ML) techniques, the feasibility of this approach is that the power consumption is closely related to the executing code in CPUs, that is when the execution code is tampered with, the power consumption changes accordingly. To validate this idea, we set up a testbed based on DTU and simulated four types of imperceptible attacks that change the code running in ARM and DSP processors, respectively. We generate representative features and select lightweight ML algorithms to detect these attacks. We finally implemented the detection system on the windows and ubuntu platform and validated its effectiveness. The results show that the detection accuracy is up to 99.98% in a non-intrusive and lightweight way.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 634
Author(s):  
Sujeong Baek ◽  
Dong Oh Kim

In manufacturing systems, pick-up operations by vacuum grippers may fail owing to manufacturing errors in an object’s surface that are within the allowable tolerance limits. In such situations, manual interference is required to resume system operation, which results in considerable loss of time as well as economic losses. Although vacuum grippers have many advantages and are widely used in the industry, it is highly difficult to directly monitor the current machine status and provide appropriate recovery feedback for stable operation. Therefore, this paper proposes a method to detect the success or failure of a suction operation in advance by analyzing the amount of outlet air pressure in the Venturi line. This was achieved by installing an air pressure sensor on the Venturi line to predict whether the current suction action will be successful. Through empirical experiments, it was found that downward movements in the z-axis of the vacuum gripper can easily rectify a faulty gripper suction operation. Real-time monitoring results verified that predictive process adjustment of the pick-up operation can be performed by modifying the z-position of the vacuum gripper.


2021 ◽  
pp. 110863
Author(s):  
Styliani I. Kampezidou ◽  
Archana Tikayat Ray ◽  
Scott Duncan ◽  
Michael G. Balchanos ◽  
Dimitri N. Mavris

2013 ◽  
Vol 41 (9) ◽  
pp. 2516-2526
Author(s):  
Simone Palazzo ◽  
Andrea Murari ◽  
Paolo Arena ◽  
Didier Mazon ◽  
Jet-Efda Contributors

Cerâmica ◽  
2018 ◽  
Vol 64 (370) ◽  
pp. 176-182 ◽  
Author(s):  
C. I. Torres ◽  
N. M. Rendtorff ◽  
M. Cipollone ◽  
E. F. Aglietti ◽  
G. Suárez

Abstract The results of qualitative and quantitative properties of clay based ceramic are presented in this work. Four different shaping methods and sintering temperatures were used to understand their influence in the final properties of a ceramic material formulated using kaolinite clay and calcined alumina. This material can be used as a structural ceramic for different applications, and there is no pre-established relation between the forming method and the final sintered properties. Forming methods used to prepare the samples were uniaxial pressing (a batch process that allows application in dry samples), extruding (a continuous process that requires moisture), slip casting (a process that allows to shape complex ceramic ware), and lamination (a batch process that requires moisture). Sintering temperatures were in the range of 1100 and 1400 °C. In order to compare how properties behave as the shaping method and sintering temperature change, textural properties, shrinkage, porosimetry, phase composition and mechanical strength were evaluated and analyzed. Scanning electron microscopy and microtomography were employed for analyzing and comparing the developed microstructures. Differences in the resulting properties are explained in terms of the developed crystalline phases and microstructure.


Sign in / Sign up

Export Citation Format

Share Document