Phase and point defect equilibria in the titanomagnetite solid solution

1982 ◽  
Vol 8 (3) ◽  
pp. 112-120 ◽  
Author(s):  
Ricardo Aragón ◽  
Robert H. McCallister
2001 ◽  
Vol 3 (4) ◽  
pp. 606-612 ◽  
Author(s):  
Paolo Ghigna ◽  
Giorgio Spinolo ◽  
Lorenzo Malavasi ◽  
Gaetano Chiodelli ◽  
Giorgio Flor

2017 ◽  
Vol 19 (5) ◽  
pp. 3869-3883 ◽  
Author(s):  
Jing Yang ◽  
Mostafa Youssef ◽  
Bilge Yildiz

We present a multi-scale model to predict defect redistribution both in interface core and space charge layer across oxide/oxide hetero-interfaces.


2002 ◽  
Vol 753 ◽  
Author(s):  
L. M. Pike ◽  
Y. A. Chang ◽  
C. T. Liu ◽  
I. M. Anderson

ABSTRACTThis paper provides a review of recent progress on point defect and solute hardening in binary and ternary B2 intermetallics. As is the case for disordered metallic solutions, the presence of point defects and solute atoms in ordered intermetallic compounds results in solid solution hardening (SSH). However, factors unique to ordered systems are often responsible for unusual hardening effects. Binary compounds with identical crystal structures can exhibit significantly different hardness behavior. Ternary solute additions to ordered compounds can give rise to apparent solid solution softening as well as unexpectedly rapid hardening. These effects arise from the interaction of multiple defect types as well as the presence of multiple sublattice sites available for solute occupation. Therefore, before the SSH behavior of ordered intermetallics can be properly studied, it is necessary to develop an understanding of the types and quantities of the point defects which are present. Three recent studies by the authors are reviewed. Much of the work was done on NiAl and FeAl in binary form as well as with ternary additions. Defect concentrations over wide ranges in alloy composition and quenching temperature were determined using the ALCHEMI (atom location by channeling enhanced microanalysis) technique combined with vacancy measurements. Hardness values were also measured. It was found that most of the observed SSH effects could be rationalized on the basis of the measured point defect concentrations.


1990 ◽  
Vol 13 (4) ◽  
pp. 397-403
Author(s):  
Ing‐Ruey Liaw ◽  
Kan‐Sen Chou ◽  
Ming‐Shyong Lin

Author(s):  
Muhammad Musaddique Ali Rafique

Bubble (point defect) – a precursor of fuzz or under dense nanostructure formation is crystal lattice defect. Suitable selection of crystal lattice which inhibit Frenkel pair generation and intrinsically promotes selfinterstitial solid solution strengthening contributes effectively towards making plasma facing material. For this, interstitial sites, their size, amount / fraction, positions, tendency of occupation and diffusion parameters (e.g. activation energies (Q), activation volumes) are determined. Fcc iron carbon alloys (austenitic stainless steels AISI / SAE 321, fcc structure, Pearson code cF4, space group Fm3̅m) are proposed as suitable candidates. Along with their room temperature fcc structure having 12 interstitial positions (4 octahedral, 6 coordination sites and 8 tetrahedral, 4 coordination sites / unit cell) to allow insertion of self (iron) atoms, they have excellent corrosion resistance, thermal conductivity, and nonmagnetic properties. After their melting, casting, and machining to required dimensions and geometry, stabilizing heat treatment is applied to precipitate all carbon as TiC and prevent formation of Cr23C6 (sensitization). This resist heat and surface degradation and yield excellent architecture which not only inhibit Frankel pair generation but will also allow bulk assimilation or surface annihilation (loop punching) of this lattice point defect. A superior thermal, fluid, and structural design augment above


Sign in / Sign up

Export Citation Format

Share Document