Alternative energy technologies and health

1981 ◽  
Vol 5 (4) ◽  
pp. 283-283
Author(s):  
A. P. Watson ◽  
E. L. Etnier ◽  
P. J. Walsh
Author(s):  
Prof. Gaffar G. Momin, Rushikesh Barve, Manasi Shah, Nikita Sutar and Dominic Jibin James

Considering the rate of depletion of the available oil-based fuels, Renewable Energy Technologies are receiving significant attention in these years. It is, therefore, necessary to find alternatives to energy sources. This project focusses on one such alternative. A study is done on a vehicle suspension system and braking system. Suspension in vehicles produces linear vibrations due to the roughness on the roads. These vibrations are absorbed the shock absorbers and dissipated in the form of heat. In the case of a conventional braking system,a huge amount of heat is lost due to friction. This study proposes a design of a system where the heat lost in the suspension system is extracted, converted into a usable form of electrical energy and stored in batteries. This stored energy is further used in the operation of electromagnet powered brakes. Using the Regenerative Suspension System reduces the waste of energy in the shock absorbers and gives an alternative energy source and use of the Electromagnetic Braking System ensures frictionless braking. Thus, the overall consumption of energy is reduced by a notable amount.


Author(s):  
Andrei Mircea Bolboaca

Covering the energy demands under environmental protection and satisfying economic and social restrictions, together with decreasing polluting emissions, are impetuous necessities, considering that over half of the pollutant emissions released in the environment are the effect of the processes of electricity and heat production from the classic thermoelectric powerplant. Increasing energy efficiency and intensifying the use of alternative resources are key objectives of global policy. In this context, a range of new energy technologies has been developed, based on alternative energy conversion systems, which have recently been used more and more often for the simultaneous production of electricity and heat. An intensification of the use of combined energy production correlated with the tendency towards the use of clean energy resources can be helpful in achieving the global objectives of increasing fuel diversity and ensuring energy demand. The chapter aims at describing the fuel cell technology, in particular those of the SOFC type, used in the CHP for stationary applications.


Author(s):  
Pedro Mendoza G. ◽  
Maximiliano Arroyo Ulloa ◽  
Vincenzo Naso

The bioceanic Amazon corridor represents a development opportunity for the Peruvian and Brazilian economy but this economic evolution is linked to the production and use of energy. Energy is a conditioning factor of economic growth and development and the application of conventional (or alternative) energy systems is strongly influenced by both quantitative and qualitative trends in energy consumption. Decentralized production of energy is necessary, and new decentralized energy technologies based on renewable sources could provide additional income opportunities, decreasing environmental risk along Amazon corridor, and providing clean fuel and electricity. It’s necessary that the bioceanic Amazon corridors call for the application of energy systems related to the renewable local resources in coast, mountain and forest. In Peru, firewood is the principal energy source for cooking and heating and this fuel is used in inefficient combustion system that increases the impact on ecosystems. Typical Peruvian biomass source are wood, agricultural residues, agro industrial waste and municipal solid waste. The most obvious it’s the availability of agricultural and agro industrial residues that could be used as a biomass fuel source in modern plant to produce electricity. Today, there is a growing interest for ethanol production from sugar cane, but it couldn’t be applied along bioceanic corridors; therefore it is necessary to integrate other renewable sources.


2018 ◽  
Vol 12 (3) ◽  
pp. 369-386
Author(s):  
Stefan Walter

The European Commission has developed a series of regulatory measures to introduce alternative energy technologies, including a binding target for a specified share of biofuel in petrol and diesel, in European Union (EU) member states. The instruments to achieve this goal include taxation, subsidies and legal restraints. Biofuel suffers from the problem of being uncompetitive, and the intervention addresses the price gap between conventional fuel and biofuel. The enthusiasm for biofuel is particularly high in peripheral regions such as the northern provinces of Sweden and Finland. Expectations include renewed economic growth and employment opportunities. However, when studying the economic impact of the biofuel regulatory framework with the help of the concept of property economics, it becomes clear that the framework generates investment in biofuel production due to distorted price signals and expected profits. From the perspective of property economics, the biofuel framework challenges property rights as it requires people’s appropriated means to be put into the effort of biofuel production. The artificial change of investment conditions may lead to the formation of an investment bubble. This distorts the interweaving structure of capital goods, which contributes to the manufacturing of biofuel, including machinery and wood products. As bubbles are bound to burst, people in the affected territories may be left with a lower living standard and greater exposure to the consequences. Therefore, the biofuel regulatory framework leads to unsustainable conditions. JEL Classification: O10, O20


2006 ◽  
Vol 17 (4) ◽  
pp. 19-24
Author(s):  
M T E Kahn ◽  
W Fritz

The World Summit on Sustainable Development (WSSD) was attended by approximately 21 000 international delegates in Johannesburg, South Africa in 2002. The aim was to institute ecologically sound environmental management. Research has shown that fossil fuel or coal fired power plants are the major cause of air pollution in electricity generation. This paper seeks to show technologies that can contribute to reducing the environmental impacts of electricity production, via emission control systems, industry energy policy, renewable energy technologies etc. and the promotion of active research and development in alternative energy applications in Africa. Innovative energy technology research and development and applications such as smaller scale distributed generation and solid state lighting (SSL) are seen as capable of adding a positive contribution in this area.


Sign in / Sign up

Export Citation Format

Share Document