Investigations on the practical use of a hydrodynamic numeric method for calculation of sea level variations in the North Sea, the Skagerrak and the Kattegat

1971 ◽  
Vol 24 (5) ◽  
pp. 210-227 ◽  
Author(s):  
J. T. Duun-Christensen
1999 ◽  
Vol 19 (6) ◽  
pp. 821-842 ◽  
Author(s):  
H. Langenberg ◽  
A. Pfizenmayer ◽  
H. von Storch ◽  
J. Sündermann

2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


2014 ◽  
Vol 119 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sönke Dangendorf ◽  
Francisco M. Calafat ◽  
Arne Arns ◽  
Thomas Wahl ◽  
Ivan D. Haigh ◽  
...  

Records of sea level for several North Sea ports for the winter of 1953-4 have been in vestigated. They were split into 14-day intervals, and each 14-day record was Fourieranalyzed to determine if any non-astronomical periods were present. There was evidence of some activity between 40 and 50 h period, and a determination of the phase angles at different ports showed that the activity could be due to a disturbance travelling southwards from the north of the North Sea. The disturbance was partly reflected somewhere near the line from Lowestoft to Flushing, so that one part returned past Flushing and Esbjerg towards Bergen while the other part travelled towards Dover, and there was evidence of its existence on the sea-current records taken near St Margaret's Bay. These results were confirmed by subtracting the predicted astronomical tidal levels from the observed values of sea level and cross-correlating the residuals so obtained for each port with those found at Lowestoft. The residuals at Lowestoft and Aberdeen were compared with the meteorological conditions, and it was found that, although they could be attributed to a large extent to conditions within the North Sea, there was an additional effect due to a travelling surge which was of the same order of magnitude at both Lowestoft and Aberdeen and which was closely related to the rate of change with time of the atmospheric pressure difference between Wick and Bergen.


Sign in / Sign up

Export Citation Format

Share Document