On the direct measurement of very large strain at high strain rates

1967 ◽  
Vol 7 (1) ◽  
pp. 8-14 ◽  
Author(s):  
James F. Bell
2013 ◽  
Vol 631-632 ◽  
pp. 458-462 ◽  
Author(s):  
Peng Duo Zhao ◽  
Yu Wang ◽  
Jian Ye Du ◽  
Lei Zhang ◽  
Zhi Peng Du ◽  
...  

The strain rate sensitivity of neoprene is characterized using a modified split Hopkinson pressure bar (SHPB) system at intermediate (50 s-1, 100 s-1) and high (500 s-1, 1000 s-1) strain rates. We used two quartz piezoelectric force transducers that were sandwiched between the specimen and experimental bars respectively to directly measure the weak wave signals. A laser gap gage was employed to monitor the deformation of the sample directly. Three kinds of neoprene rubbers (Shore hardness: SHA60, SHA65, and SHA70) were tested using the modified split Hopkinson pressure bar. Experimental results show that the modified apparatus is effective and reliable for determining the compressive stress-strain responses of neoprene at intermediate and high strain rates.


1992 ◽  
Vol 45 (3S) ◽  
pp. S19-S45 ◽  
Author(s):  
Sia Nemat-Nasser

In this paper certain fundamental concepts underlying the phenomenological theories of elastic-plastic deformations at finite strains and rotations are presented, and some of the commonly discussed theories are summarized, emphasizing the constitutive parameters which influence strain localization and material instability often observed in finite deformation of ductile materials. Particular attention is paid to the thermodynamic basis of inelastic deformation. Conditions for the existence of inelastic potentials are discussed. The results are presented in terms of a general material strain and its conjugate stress, and then specialized for particular applications, emphasizing quantities and theories which are reference- and strain measure-independent. Rate-independent and rate-dependent elastoplasticity relations are developed, starting from a finite deformation version of the J2-plasticity with isotropic and kinematic hardening, and leading to theories which include dilatancy, pressure sensitivity, frictional effects, and the noncoaxiality of the plastic strain and the stress deviator. A class of commonly used deformation plasticity theories is then examined and its relation to nonlinear elasticity is discussed. The question of plastic spin, and its relation to the decomposition of the deformation gradient into elastic and plastic constituents, is reviewed in some detail, and it is shown that this decomposition yields explicit relations which uniquely define all spins in terms of the velocity gradient and the elastic and plastic deformation rates, hence requiring no additional constitutive relations for the plastic spin. The phenomenon of strain localization at high strain rates is illustrated and discussed, and a series of numerical results are given. Finally, a recent breakthrough in elastoplastic explicit computational algorithms for large-strain, large-strain-rate problems is briefly reviewed.


2016 ◽  
Vol 725 ◽  
pp. 138-142
Author(s):  
Ming Jun Piao ◽  
Hoon Huh ◽  
Ik Jin Lee

This paper is concerned with the characterization of the OFHC copper flow stress at strain rates ranging from 10−3 s−1 to 106 s−1 considering the large strain and high temperature effects. Several uniaxial material tests with OFHC copper are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1 by using a INSTRON 5583, a High Speed Material Testing Machine (HSMTM), and a tension split Hopkinson pressure bar. In order to consider the thermal softening effect, tensile tests at 25°C and 200°C are performed at strain rates of 10−3 s−1,101 s−1, and 102 s−1. A modified thermal softening model is considered for the accurate application of the thermal softening effect at high strain rates. The large strain behavior is challenged by using the swift power law model. The high strain rates behavior is fitted with the Lim–Huh model. The hardening curves are evaluated by comparing the final shape of the projectile from numerical simulation results with the Taylor impact tests.


Author(s):  
James A. Bieler ◽  
Brad G. Davis

Abstract In order to allow for the numerical modeling of impacts for the design of live fire facilities commonly used by military and law enforcement personnel against next generation and environmentally friendly ammunition currently in development, constitutive models for novel target materials must be developed. Many existing facilities are constructed from AR500 steel, coupled with a layer of cellular rubber to reduce impact velocities and contain projectile fragments. High strain rate models, such as the commonly used Johnson-Cook constitutive model, are widely available to characterize AR500 steel, but calibrated models do not currently exist to characterize the cellular rubber. This project seeks to address this shortfall and provide a suitable material model for designers of these facilities in order to ensure the safety of users and the public. Appropriate constitutive models that account for the large strain, high strain rates, and temperature effects experienced during ballistic events and the porosity of the material were researched and a plan developed for future materials testing. Three suitable models were selected for further analysis — A Non-Linear Elastic Model described by Johnson in his work with polyurethane coupled with a Mie-Gruneisen equation of state to account for the porosity of the material, an Osborn-Hull model developed for use with crushable solids, and the Holmquist-Johnson-Cook Model commonly used for cementitious materials.


2018 ◽  
Author(s):  
Gabriel Testa ◽  
Gianluca Iannitti ◽  
Andrew Ruggiero ◽  
Domenico Gentile ◽  
Nicola Bonora

Sign in / Sign up

Export Citation Format

Share Document