finite deformation
Recently Published Documents


TOTAL DOCUMENTS

1121
(FIVE YEARS 126)

H-INDEX

70
(FIVE YEARS 7)

Author(s):  
Eugenia Stanisauskis ◽  
Paul Miles ◽  
William Oates

Auxetic foams exhibit novel mechanical properties due to their unique microstructure for improved energy-absorption and cavity expansion applications that have fascinated the scientific community since their inception. Given the advancements in material processing and performance of polymer open cell auxetic foams, there is a strong desire to fully understand the nonlinear rate-dependent deformation of these materials. The influence of nonlinear compressibility is introduced here along with relaxation effects to improve model predictions for different stretch rates and finite deformation regimes. The viscoelastic behavior of the material is analyzed by comparing fractional order and integer order calculus models. All results are statistically validated using maximum entropy methods to obtain Bayesian posterior densities for the hyperelastic, auxetic, and viscoelastic parameters. It is shown that fractional order viscoelasticity provides [Formula: see text]–[Formula: see text] improvement in prediction over integer order viscoelastic models when the model is calibrated at higher stretch rates where viscoelasticity is more significant.


Author(s):  
Nha Thanh Nguyen ◽  
Minh Ngoc Nguyen ◽  
Thai Van Vu ◽  
Thien Tich Truong ◽  
Tinh Quoc Bui

2021 ◽  
Vol 33 (11) ◽  
pp. 113314
Author(s):  
N. Phan-Thien (Phan Thiên Nhân) ◽  
S. Kim ◽  
S. Wang

2021 ◽  
Vol 22 (4) ◽  
pp. 609-628
Author(s):  
I-S. Liu ◽  
M. G. Teixeira ◽  
G. T. A. Pereira

The motion of a body can be expressed relative to the present configuration of the body, known as the relative motion description, besides the classical Lagrangian and the Eulerian descriptions. When the time increment from the present state is small enough, the nonlinear constitutive equations can be linearized relative to the present state so that the resulting system of boundary value problems becomes linear. This formulation is based on the well-known ``small-on-large'' idea, and can be implemented for solving problems with large deformation in successive incremental manner. In fact, the proposed method is a process of repeated applications of the well-known “small deformation superposed on finite deformation” in the literature. This article presents these ideas applied to thermoelastic materials with a brief comment on the exploitation of entropy principle in general. Some applications of such a formulation in numerical simulations are briefly reviewed and a numerical result is shown.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1235
Author(s):  
Lei Cai ◽  
Mohamed Jebahi ◽  
Farid Abed-Meraim

The present paper aims at providing a comprehensive investigation of the abilities and limitations of strain gradient crystal plasticity (SGCP) theories in capturing different kinds of localization modes in single crystals. To this end, the small deformation Gurtin-type SGCP model recently proposed by the authors, based on non-quadratic defect energy and the uncoupled dissipation assumption, is extended to finite deformation. The extended model is then applied to simulate several single crystal localization problems with different slip system configurations. These configurations are chosen in such a way as to obtain idealized slip and kink bands as well as general localization bands, i.e., with no particular orientation with respect to the initial crystallographic directions. The obtained results show the good abilities of the applied model in regularizing various kinds of localization bands, except for idealized slip bands. Finally, the model is applied to reproduce the complex localization behavior of single crystals undergoing single slip, where competition between kink and slip bands can take place. Both higher-order energetic and dissipative effects are considered in this investigation. For both effects, mesh-independent results are obtained, proving the good capabilities of SGCP theories in regularizing complex localization behaviors. The results associated with higher-order energetic effects are in close agreement with those obtained using a micromorphic crystal plasticity approach. Higher-order dissipative effects led to different results with dominant slip banding.


Sign in / Sign up

Export Citation Format

Share Document