scholarly journals Atomki anomaly in gauged U(1)R symmetric model

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Osamu Seto ◽  
Takashi Shimomura

Abstract The Atomki collaboration has reported that unexpected excesses have been observed in the rare decays of Beryllium nucleus. It is claimed that such excesses can suggest the existence of a new boson, called X, with the mass of about 17 MeV. To solve the Atomki anomaly, we consider a model with gauged U(1)R symmetry and identify the new gauge boson with the X boson. We also introduce two SU(2) doublet Higgs bosons and one singlet Higgs boson, and discuss a very stringent constraint from neutrino-electron scattering. It is found that the U(1)R charges of the doublet scalars are determined to evade the constraint. In the end, we find the parameter region in which the Atomki signal and all experimental constraints can be simultaneously satisfied.

2016 ◽  
Vol 31 (04n05) ◽  
pp. 1650005 ◽  
Author(s):  
O. M. Boyarkin ◽  
G. G. Boyarkina

Two most popular GUT scenarios, namely, the left–right symmetric model (LRM) and models coming from [Formula: see text] grand unification (effective rank 5 models (ER5M’s)) are considered. Both models forecast existence of the extra neutral gauge boson. Its contributions to the decay of the Higgs boson being an analog of the Standard Model (SM) Higgs boson [Formula: see text] and the process of the associated Higgs production with [Formula: see text] boson (Higgsstrahlung) [Formula: see text] are found. For both processes, deviations from the SM predicted by the LRM prove to be larger than that predicted by the ER5M’s. It is shown that in the case of the decay [Formula: see text] it is impossible to observe these deviations at the condition of the High Luminosity Large Hadron Collider. Investigation of the Higgsstrahlung disclosed that with its help one could make a choice between the SM and the SM extensions under consideration.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Henning Bahl ◽  
Tim Stefaniak ◽  
Jonas Wittbrodt

Abstract The presence of charged Higgs bosons is a generic prediction of multiplet extensions of the Standard Model (SM) Higgs sector. Focusing on the Two-Higgs-Doublet-Model (2HDM) with type I and lepton-specific Yukawa sectors, we discuss the charged Higgs boson collider phenomenology in the theoretically and experimentally viable parameter space. While almost all existing experimental searches at the LHC target the fermionic decays of charged Higgs bosons, we point out that the bosonic decay channels — especially the decay into a non-SM-like Higgs boson and a W boson — often dominate over the fermionic channels. Moreover, we revisit two genuine BSM effects on the properties of the discovered Higgs boson — the charged Higgs contribution to the diphoton rate and the Higgs decay to two light Higgs bosons — and their implication for the charged Higgs boson phenomenology. As main result of the present paper, we propose five two-dimensional benchmark scenarios with distinct phenomenological features in order to facilitate the design of dedicated LHC searches for charged Higgs bosons decaying into a W boson and a light, non-SM-like Higgs boson.


2018 ◽  
Vol 46 ◽  
pp. 1860058
Author(s):  
Ye Chen

Latest results of searches for heavy Higgs bosons in fermionic final states are presented using the CMS detector at the LHC. Results are based on pp collision data collected at centre-of-mass energies of 8 and 13 TeV which have been interpreted according to different extensions of the Standard Model such as MSSM, 2HDM, and NMSSM. These searches look for evidence of other scalar or pseudoscalar bosons, in addition to the observed SM-like 125 GeV Higgs boson, and set 95% confidence level upper limits in fermionic final states and benchmark models explored. The talk reviews briefly the major results obtained by the CMS Collaboration during Run I, and presents the most recent searches performed during Run II.


2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


2019 ◽  
Vol 64 (8) ◽  
pp. 714
Author(s):  
T. V. Obikhod ◽  
I. A. Petrenko

The problems of the Standard Model, as well as questions related to Higgs boson properties led to the need to model the ttH associated production and the Higgs boson decay to a top quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia, and Delphes and using the latest kinematic cuts taken from experimental data obtained at the LHC, we have predicted the masses of MSSM Higgs bosons, A and H.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Junxing Pan ◽  
Jung-Hsin Chen ◽  
Xiao-Gang He ◽  
Gang Li ◽  
Jhih-Ying Su

AbstractIn this work, we study the potential of searching for triply charged Higgs boson originating from a complex Higgs quadruplet in the final state with at least three same-sign leptons. A detailed collider analysis of the SM backgrounds and signals is performed at a 100 TeV pp collider for the triply charged Higgs boson mass below 1 TeV and the Higgs quadruplet vacuum expectation value $$v_\Delta $$ v Δ ranging from $$1.5\times 10^{-9}~\text {GeV}$$ 1.5 × 10 - 9 GeV to $$1.3~\text {GeV}$$ 1.3 GeV and the mass splitting $$\Delta m$$ Δ m between the nearby states of the Higgs quadruplet satisfying $$|\Delta m|\lesssim 30~\text {GeV}$$ | Δ m | ≲ 30 GeV . About $$100~\text {fb}^{-1}$$ 100 fb - 1 of data are required at most for $$5\sigma $$ 5 σ discovery. We also revisit the sensitivity at the Large Hadron Collider (LHC) and find that $$5\sigma $$ 5 σ discovery of the triply charged Higgs boson below 1 TeV can be reached for a relatively small $$v_\Delta $$ v Δ . For example, if $$v_\Delta =10^{-6}~\text {GeV}$$ v Δ = 10 - 6 GeV and $$\Delta m=0$$ Δ m = 0 , the integrated luminosity of $$330~\text {fb}^{-1}$$ 330 fb - 1 is needed. But for a relatively large $$v_\Delta $$ v Δ , i.e., $$v_\Delta \gtrsim 10^{-3}~\text {GeV}$$ v Δ ≳ 10 - 3 GeV , the triply charged Higgs boson above about 800 GeV cannot be discovered even in the high-luminosity LHC era. For $$\Delta m>0$$ Δ m > 0 , the cascade decays are open and the sensitivity can be improved depending on the value of $$v_\Delta $$ v Δ .


Author(s):  
T. Biekötter ◽  
M. Chakraborti ◽  
S. Heinemeyer

The CMS collaboration reported an intriguing [Formula: see text] (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a [Formula: see text] (local) excess in the [Formula: see text] final state at LEP. We briefly review the proposed combined interpretations for the two excesses. In more detail, we review the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show which channels have the best prospects for the discovery of additional Higgs bosons at the upcoming Run 3 of the LHC.


Sign in / Sign up

Export Citation Format

Share Document