centre of mass
Recently Published Documents


TOTAL DOCUMENTS

889
(FIVE YEARS 199)

H-INDEX

42
(FIVE YEARS 5)

Author(s):  
Wolfgang Adam ◽  
Iacopo Vivarelli

The second period of datataking at the Large Hadron Collider (LHC) has provided a large dataset of proton–proton collisions that is unprecedented in terms of its centre-of-mass energy of 13 TeV and integrated luminosity of almost 140 fb[Formula: see text]. These data constitute a formidable laboratory for the search for new particles predicted by models of supersymmetry. The analysis activity is still ongoing, but a host of results on supersymmetry had already been released by the general purpose LHC experiments ATLAS and CMS. In this paper, we provide a map into this remarkable body of research, which spans a multitude of experimental signatures and phenomenological scenarios. In the absence of conclusive evidence for the production of supersymmetric particles we discuss the constraints obtained in the context of various models. We finish with a short outlook on the new opportunities for the next runs that will be provided by the upgrade of detectors and accelerator.


2022 ◽  
Vol 225 (1) ◽  
Author(s):  
Nicholas E. Durston ◽  
Yusuf Mahadik ◽  
Shane P. Windsor

ABSTRACT Estimating centre of mass and mass moments of inertia is an important aspect of many studies in biomechanics. Characterising these parameters accurately in three dimensions is challenging with traditional methods requiring dissection or suspension of cadavers. Here, we present a method to quantify the three-dimensional centre of mass and inertia tensor of birds of prey using calibrated computed tomography (CT) scans. The technique was validated using several independent methods, providing body segment mass estimates within approximately 1% of physical dissection measurements and moment of inertia measurements with a 0.993 R2 correlation with conventional trifilar pendulum measurements. Calibrated CT offers a relatively straightforward, non-destructive approach that yields highly detailed mass distribution data that can be used for three-dimensional dynamics modelling in biomechanics. Although demonstrated here with birds, this approach should work equally well with any animal or appendage capable of being CT scanned.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Gavin Bewick ◽  
Silvia Ferrario Ravasio ◽  
Peter Richardson ◽  
Michael H. Seymour

Abstract We study the simulation of initial-state radiation in angular-ordered parton showers in order to investigate how different interpretations of the ordering variable affect the logarithmic accuracy of such showers. This also enables us to implement a recoil scheme which is consistent between final-state and initial-state radiation. We present optimal values of the strong coupling and intrinsic transverse momentum to be used in each version of the parton shower, tuned using Z0-boson production at the LHC at 7 TeV. With these tuned showers, we perform a phenomenological study of the Drell-Yan process at several centre-of-mass energies.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Nava Gaddam ◽  
Nico Groenenboom ◽  
Gerard ’t Hooft

Abstract We study scattering on the black hole horizon in a partial wave basis, with an impact parameter of the order of the Schwarzschild radius or less. This resembles the strong gravity regime where quantum gravitational effects appear. The scattering is governed by an infinite number of virtual gravitons exchanged on the horizon. Remarkably, they can all be summed non-perturbatively in ħ and γ ∼ MPl/MBH. These results generalise those obtained from studying gravitational backreaction. Unlike in the eikonal calculations in flat space, the relevant centre of mass energy of the collisions is not necessarily Planckian; instead it is easily satisfied, s » γ2$$ {M}_{\mathrm{Pl}}^2 $$ M Pl 2 , for semi-classical black holes. The calculation lends further support to the scattering matrix approach to quantum black holes, and is a second-quantised generalisation of the same.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Clément Helsens ◽  
Gerardo Ganis

AbstractThe international Future Circular Collider (FCC) study aims at designing $$\mathrm {pp}$$ pp , $$\mathrm {e^{+}e^{-}}$$ e + e - , $$\mathrm {e^{\pm }p}$$ e ± p colliders to be built in a new 100-km tunnel in the Geneva region. The electroweak, Higgs and top factory (FCC-ee) is designed to provide collisions at a centre-of-mass energy range between 90 (Z-pole) and 365 GeV ($$\mathrm {t}\bar{\mathrm {t}}$$ t t ¯ ) and unprecedented integrated luminosities, producing huge amounts of data which will pose significant challenges to data processing. In this study, we discuss the needs in terms of storage and CPU for the diverse phases of the project, and the possible solutions mostly based on the models developed for HL-LHC.


2021 ◽  
Vol 932 ◽  
Author(s):  
Owen H. Jordan ◽  
Gabriel G. Rooney ◽  
Benjamin J. Devenish ◽  
Maarten van Reeuwijk

Direct numerical simulation is used to investigate the integral behaviour of buoyant plumes subjected to a uniform crossflow that are infinitely lazy at the source. Neither a plume trajectory defined by the centre of mass of the plume $z_c$ nor a trajectory defined by the central streamline $z_{U}$ is aligned with the average streamlines inside the plume. Both $z_c$ and $z_{U}$ are shown to correlate with field lines of the total buoyancy flux, which implies that a model for the vertical turbulent buoyancy flux is required to faithfully predict the plume angle. A study of the volume conservation equation shows that entrainment due to incorporation of ambient fluid with non-zero velocity due to the increase in the surface area (the Leibniz term) is the dominant entrainment mechanism in strong crossflows. The data indicate that pressure differences between the top and bottom of the plume play a leading role in the evolution of the horizontal and vertical momentum balances and are crucial for appropriately modelling plume rise. By direct parameterisation of the vertical buoyancy flux, the entrainment and the pressure, an integral plume model is developed which is in good agreement with the simulations for sufficiently strong crossflow. A perturbation expansion shows that the current model is an intermediate-range model valid for downstream distances up to $100\ell _b$ – $1000 \ell _b$ , where $\ell _b$ is the buoyancy length scale based on the flow speed and plume buoyancy flux.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Paolo Azzurri ◽  
Gregorio Bernardi ◽  
Sylvie Braibant ◽  
David d’Enterria ◽  
Jan Eysermans ◽  
...  

AbstractThe FCC-ee offers powerful opportunities to determine the Higgs boson parameters, exploiting over $$10^6$$ 10 6 $${ \hbox {e}^+\hbox {e}^- \rightarrow \hbox {ZH}}$$ e + e - → ZH events and almost $$10^5$$ 10 5 $${ \hbox {WW} \rightarrow \hbox {H}}$$ WW → H events at centre-of-mass energies around 240 and 365 GeV. This essay spotlights the important measurements of the ZH production cross section and of the Higgs boson mass. The measurement of the total ZH cross section is an essential input to the absolute determination of the HZZ coupling—a “standard candle” that can be used by all other measurements, including those made at hadron colliders—at the per-mil level. A combination of the measured cross sections at the two different centre-of-mass energies further provides the first evidence for the trilinear Higgs self-coupling, and possibly its first observation if the cross section measurement can be made accurate enough. The determination of the Higgs boson mass with a precision significantly better than the Higgs boson width (4.1 MeV in the standard model) is a prerequisite to either constrain or measure the electron Yukawa coupling via direct $${ \hbox {e}^+\hbox {e}^- \rightarrow \hbox {H}}$$ e + e - → H production at $$\sqrt{s} = 125$$ s = 125  GeV. Approaching the statistical limit of 0.1% and $${\mathcal {O}}(1)$$ O ( 1 )  MeV on the ZH cross section and the Higgs boson mass, respectively, sets highly demanding requirements on accelerator operation (ZH threshold scan, centre-of-mass energy measurement), detector design (lepton momentum resolution, hadronic final state reconstruction performance), theoretical calculations, and analysis techniques (efficiency and purity optimization with modern tools, constrained kinematic fits, control of systematic uncertainties). These challenges are examined in turn in this essay


2021 ◽  
Vol 24 (1) ◽  
pp. 53-61
Author(s):  
Anwr M. Albaghdadi ◽  
Masri Baharom ◽  
Shaharin Sulaimana

This study aims to present mathematical modelling to evaluate and analyze double crankrocker engine performance. The study suggests the use of two methods to reduce system vibration through balancing optimization and vibrational analysis. The combination of both methods acts as a verification method; besides it can be used as a tool for further system design enhancement and condition monitoring. The derived mathematical model is then used for balancing optimization to identify system shaking forces and moments, while variable speed is considered as an added parameter to evolve the optimization process. This factor shows better enhancement in reducing system shaking forces and moments compared to constant speed balancing method. Next, the system characteristics were concluded in terms of mode shapes and natural frequencies using modal and frequency response analysis, which give clear clue for secure system operational ground. Finally, the reduction in system vibrations was translated into engine’s centre of mass velocity, which evaluates balancing process effectiveness and indicate if further enhancement should be conducted.


2021 ◽  
Vol 9 ◽  
Author(s):  
Philip B. Vixseboxse ◽  
Charlotte G. Kenchington ◽  
Frances S. Dunn ◽  
Emily G. Mitchell

The Ediacaran fossils of the Mistaken Point E surface have provided crucial insight into early animal communities, including how they reproduced, the importance of Ediacaran height and what the most important factors were to their community dynamics. Here, we use this iconic community to investigate how morphological variation between eight taxa affected their ability to withstand different flow conditions. For each of Beothukis, Bradgatia, Charniodiscus procerus, Charniodiscus spinosus, Plumeropriscum, Primocandelabrum, Thectardis and Fractofusus we measured the orientation and length of their stems (if present) and their fronds. We statistically tested each taxon’s stem and frond orientation distributions to see whether they displayed a uniform or multimodal distribution. Where multimodal distributions were identified, the stem/frond length of each cohort was tested to identify if there were differences in size between different orientation groups. We find that Bradgatia and Thectardis show a bimodal felling direction, and infer that they were felled by the turbulent head of the felling flow. In contrast, the frondose rangeomorphs including Beothukis, Plumeropriscum, Primocandelabrum, and the arboreomorphs were felled in a single direction, indicating that they were upright in the water column, and were likely felled by the laminar tail of the felling flow. These differences in directionality suggests that an elongate habit, and particularly possession of a stem, lent greater resilience to frondose taxa against turbulent flows, suggesting that such taxa would have had improved survivability in conditions with higher background turbulence than taxa like Bradgatia and Thectardis, that lacked a stem and had a higher centre of mass, which may have fared better in quieter water conditions.


Sign in / Sign up

Export Citation Format

Share Document