scholarly journals Double field theory and geometric quantisation

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Luigi Alfonsi ◽  
David S. Berman

Abstract We examine various properties of double field theory and the doubled string sigma model in the context of geometric quantisation. In particular we look at T-duality as the symplectic transformation related to an alternative choice of polarisation in the construction of the quantum bundle for the string. Following this perspective we adopt a variety of techniques from geometric quantisation to study the doubled space. One application is the construction of the “double coherent state” that provides the shortest distance in any duality frame and a “stringy deformed” Fourier transform.

2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
Yuho Sakatani ◽  
Shozo Uehara

Abstract In double field theory, the physical space has been understood as a subspace of the doubled space. Recently, the doubled space has been defined as the para-Hermitian manifold and the physical space is realized as a leaf of a foliation of the doubled space. This construction naturally introduces the fundamental 2-form, which plays an important role in a reformulation of string theory known as the Born sigma model. In this paper, we present the Born sigma model for $p$-branes in M-theory and type IIB theory by extending the fundamental 2-form into $U$-duality-covariant $(p+1)$-forms.


2021 ◽  
Vol 62 (5) ◽  
pp. 052302
Author(s):  
Clay James Grewcoe ◽  
Larisa Jonke

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


2016 ◽  
Vol 125 ◽  
pp. 05017 ◽  
Author(s):  
Edvard Musaev

2018 ◽  
Vol 2018 (7) ◽  
Author(s):  
Tetsuji Kimura ◽  
Shin Sasaki ◽  
Kenta Shiozawa

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eric Lescano ◽  
Jesús A. Rodríguez

Abstract The generalized Kerr-Schild ansatz (GKSA) is a powerful tool for constructing exact solutions in Double Field Theory (DFT). In this paper we focus in the heterotic formulation of DFT, considering up to four-derivative terms in the action principle, while the field content is perturbed by the GKSA. We study the inclusion of the generalized version of the Green-Schwarz mechanism to this setup, in order to reproduce the low energy effective heterotic supergravity upon parametrization. This formalism reproduces higher-derivative heterotic background solutions where the metric tensor and Kalb-Ramond field are perturbed by a pair of null vectors. Next we study higher-derivative contributions to the classical double copy structure. After a suitable identification of the null vectors with a pair of U(1) gauge fields, the dynamics is given by a pair of Maxwell equations plus higher derivative corrections in agreement with the KLT relation.


2014 ◽  
Vol 2014 (07) ◽  
pp. 024-024 ◽  
Author(s):  
Houwen Wu ◽  
Haitang Yang

Sign in / Sign up

Export Citation Format

Share Document