linear perturbation
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 61)

H-INDEX

30
(FIVE YEARS 4)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Ronaldo C. Batista

We review dark energy models that can present non-negligible fluctuations on scales smaller than Hubble radius. Both linear and nonlinear evolutions of dark energy fluctuations are discussed. The linear evolution has a well-established framework, based on linear perturbation theory in General Relativity, and is well studied and implemented in numerical codes. We highlight the main results from linear theory to explain how dark energy perturbations become important on the scales of interest for structure formation. Next, we review some attempts to understand the impact of clustering dark energy models in the nonlinear regime, usually based on generalizations of the Spherical Collapse Model. We critically discuss the proposed generalizations of the Spherical Collapse Model that can treat clustering dark energy models and their shortcomings. Proposed implementations of clustering dark energy models in halo mass functions are reviewed. We also discuss some recent numerical simulations capable of treating dark energy fluctuations. Finally, we summarize the observational predictions based on these models.


Author(s):  
Giulia Becatti ◽  
Francesco Burgalassi ◽  
Fabrizio Paganucci ◽  
Matteo Zuin ◽  
Dan M Goebel

Abstract A significant number of plasma instabilities occur in the region just outside of hollow cathodes, depending on the injected gas flow, the current level and the application of an external magnetic field. In particular, the presence of an axial magnetic field induces a helical mode, affecting all the plasma parameters and the total current transported by the plasma. To explore the onset and behavior of this helical mode, the fluctuations in the plasma parameters in the current-carrying plume outside of a hollow cathode discharge have been investigated. The hollow cathode was operated at a current of 25 A, and at variable levels of propellant flow rate and applied magnetic fields. Electromagnetic probes were used to measure the electromagnetic fluctuations, and correlation analysis between each of the probe signals provided spatial-temporal characterization of the generated waves. Time-averaged plasma parameters, such as plasma potential and ion energy distribution function, were also collected in the near-cathode plume region by means of scanning emissive probe and retarding potential analyzer. The results show that the helical mode exists in the cathode plume at sufficiently high applied magnetic field, and is characterized by the presence of a finite electromagnetic component in the axial direction, detectable at discharge currents $\geq$ 25 A. A theoretical analysis of this mode reveals that one possible explanation is consistent with the hypotheses of resistive magnetohydrodynamics, which predicts the presence of helical modes in the forms of resistive kink. The analysis has been carried out by linear perturbation of the resistive MHD equations, from which it is possible to obtain the dispersion relation of the mode and find the $k-\omega$ unstable branch associated with the instability. These findings provided the basis for more detailed investigation of resistive MHD modes and their effect in the plume of hollow cathodes developed for electric propulsion application.


Author(s):  
Manel Perucho ◽  
José-María Martí ◽  
Vicent Quilis

Abstract We present long-term numerical three-dimensional simulations of a relativistic outflow propagating through a galactic ambient medium and environment, up to distances ∼100 kpc. Our aim is to study the role of dense media in the global dynamics of the radio source. We use a relativistic gas equation of state, and a basic description of thermal cooling terms. In previous work, we showed that a linear perturbation could enhance the jet propagation during the early phases of evolution, by introducing obliquity to the jet reverse shock. Here, we show that this effect is reduced in denser media. We find that the dentist-drill effect acts earlier, due to slower jet propagation and an increased growth of the helical instability. The global morphology of the jet is less elongated, with more prominent lobes. The fundamental physical parameters of the jet generated structure derived from our simulations fall within the estimated values derived for FRII jets in the 3C sample. In agreement with previous axisymmetric and three dimensional simulations in lower density media, we conclude that shock heating of the interstellar and intergalactic media is very efficient in the case of powerful, relativistic jets.


2021 ◽  
Vol 2021 (12) ◽  
pp. 010
Author(s):  
Angelo Caravano ◽  
Eiichiro Komatsu ◽  
Kaloian D. Lozanov ◽  
Jochen Weller

Abstract The scalar field theory of cosmological inflation constitutes nowadays one of the preferred scenarios for the physics of the early universe. In this paper we aim at studying the inflationary universe making use of a numerical lattice simulation. Various lattice codes have been written in the last decades and have been extensively used for understating the reheating phase of the universe, but they have never been used to study the inflationary phase itself far from the end of inflation (i.e. about 50 e-folds before the end of inflation). In this paper we use a lattice simulation to reproduce the well-known results of some simple models of single-field inflation, particularly for the scalar field perturbation. The main model that we consider is the standard slow-roll inflation with an harmonic potential for the inflaton field. We explore the technical aspects that need to be accounted for in order to reproduce with precision the nearly scale invariant power spectrum of inflaton perturbations. We also consider the case of a step potential, and show that the simulation is able to correctly reproduce the oscillatory features in the power spectrum of this model. Even if a lattice simulation is not needed in these cases, that are well within the regime of validity of linear perturbation theory, this sets the basis to future work on using lattice simulations to study more complicated models of inflation.


Author(s):  
Vahid Toomani ◽  
Peter J Zimmerman ◽  
Andrew Robert Clifford Spiers ◽  
Stefan Hollands ◽  
Adam Pound ◽  
...  

Abstract Inspirals of stellar-mass objects into massive black holes will be important sources for the space-based gravitational-wave detector LISA. Modelling these systems requires calculating the metric perturbation due to a point particle orbiting a Kerr black hole. Currently, the linear perturbation is obtained with a metric reconstruction procedure that puts it in a “no-string” radiation gauge which is singular on a surface surrounding the central black hole. Calculating dynamical quantities in this gauge involves a subtle procedure of “gauge completion” as well as cancellations of very large numbers. The singularities in the gauge also lead to pathological field equations at second perturbative order. In this paper we re-analyze the point-particle problem in Kerr using the corrector-field reconstruction formalism of Green, Hollands, and Zimmerman (GHZ). We clarify the relationship between the GHZ formalism and previous reconstruction methods, showing that it provides a simple formula for the “gauge completion”. We then use it to develop a new method of computing the metric in a more regular gauge: a Teukolsky puncture scheme. This scheme should ameliorate the problem of large cancellations, and by constructing the linear metric perturbation in a sufficiently regular gauge, it should provide a first step toward second-order self-force calculations in Kerr. Our methods are developed in generality in Kerr, but we illustrate some key ideas and demonstrate our puncture scheme in the simple setting of a static particle in Minkowski spacetime.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Peng Yang ◽  
Xin Li ◽  
Yu Tian

Abstract The instability of superfluids in optical lattice has been investigated using the holographic model. The static and steady flow solutions are numerically obtained from the static equations of motion and the solutions are described as Bloch waves with different Bloch wave vector k. Based on these Bloch waves, the instability is investigated at two levels. At the linear perturbation level, we show that there is a critical kc above which the superflow is unstable. At the fully nonlinear level, the intermediate state and final state of unstable superflow are identified through numerical simulation of the full equations of motion. The results show that during the time evolution, the unstable superflow will undergo a chaotic state with soliton generation. The system will settle down to a stable state with k < kc eventually, with a smaller current and a larger condensate.


2021 ◽  
Vol 26 (6) ◽  
pp. 1071-1086
Author(s):  
Jin You ◽  
Zhenlai Han

In this paper, we investigate a class of fractional hybrid differential equations with impulses, which can be seen as nonlinear differential equations with a quadratic perturbation of second type and a linear perturbation in partially ordered Banach algebras. We deduce the existence and approximation of a mild solution for the initial value problems of this system by applying Dhage iteration principles and related hybrid fixed point theorems. Compared with previous works, we generalize the results to fractional order and extend some existing conclusions for the first time. Meantime, we take into consideration the effect of impulses. Our results indicate the influence of fractional order for nonlinear hybrid differential equations and improve some known results, which have wider applications as well. A numerical example is included to illustrate the effectiveness of the proposed results.


2021 ◽  
Author(s):  
Mo Shahdloo ◽  
Urs Schuffelgen ◽  
Daniel Papp ◽  
Karla Miller ◽  
Mark Chiew

Purpose: To estimate dynamic off-resonance due to vigorous body motion in accelerated fMRI of awake behaving non-human primates (NHPs) using the standard EPI 3-line navigator, in order to attenuate the effects of time-varying off-resonance on the reconstruction. Methods: In NHP fMRI the animal's head is usually head-posted, and the dynamic off-resonance is mainly caused by motion in body parts that are distant from the brain and have low spatial frequency. Hence, off-resonance at each frame can be approximated as a spatially linear perturbation of the off-resonance at a reference frame, and is manifested as a relative linear shift in k-space. Using GRAPPA operators, we estimated these shifts by comparing the 3-line navigator at each time frame with that at the reference frame. Estimated shifts were then used to correct the data at each frame. The proposed method was evaluated in phantom scans, simulations, and in vivo data. Results: The proposed method is shown to successfully estimate low-spatial order dynamic off-resonance perturbations, including induced linear off-resonance perturbations in phantoms, and is able to correct retrospectively corrupted data in simulations. Finally, it is shown to reduce ghosting artifacts and geometric distortions by up to 20% in simultaneous multi-slice in vivo acquisitions in awake-behaving NHPs. Conclusion: A method is proposed that does not need any sequence modification or extra acquisitions and makes accelerated awake behaving NHP imaging more robust and reliable, reducing the gap between what is possible with NHP protocols and state-of-the-art human imaging.


2021 ◽  
pp. 164-176
Author(s):  
Mohamed Yassine Jedidi ◽  
Mohamed Ben Bettaieb ◽  
Farid Abed-Meraim ◽  
Mohamed Taoufik Khabou ◽  
Anas Bouguecha ◽  
...  

2021 ◽  
Author(s):  
Helen Ockenden ◽  
Robert G. Bingham ◽  
Andrew Curtis ◽  
Daniel Goldberg

Abstract. There is significant uncertainty over how ice sheets and glaciers will respond to rising global temperatures. Limited knowledge of the topography and rheology of ice-bed interface is a key cause of this uncertainty, as models show that small changes in the bed can have a large influence on predicted rates of ice loss. Most of our detailed knowledge of bed topography comes from airborne and ground-penetrating radar observations. However, these direct observations are not spaced closely enough to meet the requirements of ice-sheet models, so interpolation and inversion methods are used to fill in the gaps. Here we present the results of a new inversion of surface-elevation and velocity data over Thwaites Glacier, West Antarctica, for bed topography and slipperiness (i.e. the degree of basal slip for a given level of drag). The inversion is based on a steady-state linear perturbation analysis of the shallow-ice-stream equations. The method works by identifying disturbances to surface flow which are caused by obstacles or sticky patches in the bed, and can therefore be applied wherever the shallow-ice-stream equations hold and where surface data are available, even where the ice thickness is not well known. We assess the performance of the inversion for topography with the available radar data. Although the topographic output from the inversion is less successful where the bed slopes steeply, it compares well with radar data from the central trunk of the glacier. This method could therefore be useful as either an independent test of other interpolation methods such as mass conservation and kriging, or as a complementary technique in regions where those techniques fail. We do not have data to allow us to assess the success of the slipperiness results from our inversions, but we provide maps that may guide future seismic data collection across Thwaites Glacier. The methods presented here show significant promise for using high-resolution satellite datasets, calibrated by the sparser field datasets, to generate high resolution bed topography products across the ice sheets, and therefore contribute to reduced uncertainty in predictions of future sea-level rise.


Sign in / Sign up

Export Citation Format

Share Document