scholarly journals Boundary electromagnetic duality from homological edge modes

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Philippe Mathieu ◽  
Nicholas Teh

Abstract Recent years have seen a renewed interest in using ‘edge modes’ to extend the pre-symplectic structure of gauge theory on manifolds with boundaries. Here we further the investigation undertaken in [1] by using the formalism of homotopy pullback and Deligne- Beilinson cohomology to describe an electromagnetic (EM) duality on the boundary of M = B3 × ℝ. Upon breaking a generalized global symmetry, the duality is implemented by a BF-like topological boundary term. We then introduce Wilson line singularities on ∂M and show that these induce the existence of dual edge modes, which we identify as connections over a (−1)-gerbe. We derive the pre-symplectic structure that yields the central charge in [1] and show that the central charge is related to a non-trivial class of the (−1)-gerbe.

1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Po-Shen Hsin ◽  
Alex Turzillo

Abstract We use the intrinsic one-form and two-form global symmetries of (3+1)d bosonic field theories to classify quantum phases enriched by ordinary (0-form) global symmetry. Different symmetry-enriched phases correspond to different ways of coupling the theory to the background gauge field of the ordinary symmetry. The input of the classification is the higher-form symmetries and a permutation action of the 0-form symmetry on the lines and surfaces of the theory. From these data we classify the couplings to the background gauge field by the 0-form symmetry defects constructed from the higher-form symmetry defects. For trivial two-form symmetry the classification coincides with the classification for symmetry fractionalizations in (2 + 1)d. We also provide a systematic method to obtain the symmetry protected topological phases that can be absorbed by the coupling, and we give the relative ’t Hooft anomaly for different couplings. We discuss several examples including the gapless pure U(1) gauge theory and the gapped Abelian finite group gauge theory. As an application, we discover a tension with a conjectured duality in (3 + 1)d for SU(2) gauge theory with two adjoint Weyl fermions.


2001 ◽  
Vol 16 (04n06) ◽  
pp. 367-386 ◽  
Author(s):  
RICHARD J. SZABO

A review of the relationships between matrix models and noncommutative gauge theory is presented. A lattice version of noncommutative Yang–Mills theory is constructed and used to examine some generic properties of noncommutative quantum field theory, such as uv/ir mixing and the appearance of gauge-invariant open Wilson line operators. Morita equivalence in this class of models is derived and used to establish the generic relation between noncommutative gauge theory and twisted reduced models. Finite-dimensional representations of the quotient conditions for toroidal compactification of matrix models are thereby exhibited. The coupling of noncommutative gauge fields to fundamental matter fields is considered and a large mass expansion is used to study the properties of gauge-invariant observables. Morita equivalence with fundamental matter is also presented and used to prove the equivalence between the planar loop renormalizations in commutative and noncommutative quantum chromodynamics.


1991 ◽  
Vol 06 (14) ◽  
pp. 1291-1298 ◽  
Author(s):  
YOSHIYUKI WATABIKI

We investigate a 2-dimensional model which possesses a local vector U (1)V and axial vector U (1)A symmetry. We obtain a general form of Lagrangian which possesses this local symmetry. We also investigate the global symmetry aspects of the model. The commutator algebra of the energy-momentum tensor and the currents is derived, and the central charge of the model is calculated. Supersymmetric extension of the model is also studied.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Sridip Pal ◽  
Zhengdi Sun

Abstract We derive Cardy-like formulas for the growth of operators in different sectors of unitary 2 dimensional CFT in the presence of topological defect lines by putting an upper and lower bound on the number of states with scaling dimension in the interval [∆ − δ, ∆ + δ] for large ∆ at fixed δ. Consequently we prove that given any unitary modular invariant 2D CFT symmetric under finite global symmetry G (acting faithfully), all the irreducible representations of G appear in the spectra of the untwisted sector; the growth of states is Cardy like and proportional to the “square” of the dimension of the irrep. In the Schwarzian limit, the result matches onto that of JT gravity with a bulk gauge theory. If the symmetry is non-anomalous, the result applies to any sector twisted by a group element. For c > 1, the statements are true for Virasoro primaries. Furthermore, the results are applicable to large c CFTs. We also extend our results for the continuous U(1) group.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Po-Shen Hsin ◽  
Ho Tat Lam

Gauge theories in various dimensions often admit discrete theta angles, that arise from gauging a global symmetry with an additional symmetry protected topological (SPT) phase. We discuss how the global symmetry and ’t Hooft anomaly depends on the discrete theta angles by coupling the gauge theory to a topological quantum field theory (TQFT). We observe that gauging an Abelian subgroup symmetry, that participates in symmetry extension, with an additional SPT phase leads to a new theory with an emergent Abelian symmetry that also participates in a symmetry extension. The symmetry extension of the gauge theory is controlled by the discrete theta angle which comes from the SPT phase. We find that discrete theta angles can lead to two-group symmetry in 4d4d QCD with SU(N),SU(N)/\mathbb{Z}_kSU(N),SU(N)/ℤk or SO(N)SO(N) gauge groups as well as various 3d3d and 2d2d gauge theories.


1993 ◽  
Vol 08 (09) ◽  
pp. 803-809
Author(s):  
M. FORGER ◽  
J. LAARTZ

The recently derived current algebra of classical principal chiral models with a Wess-Zumino term is extended to include the energy-momentum tensor. It is found that the energy-momentum tensor θµν, the Noether currents [Formula: see text] and [Formula: see text] associated with the global symmetry of the theory and the composite field t appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of [Formula: see text] and t, generate a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are a deformation of the usual affine Kac-Moody/Sugawara construction.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1134
Author(s):  
Erica Bertolini ◽  
Nicola Maggiore

The 4D Maxwell theory with single-sided planar boundary is considered. As a consequence of the presence of the boundary, two broken Ward identities are recovered, which, on-shell, give rise to two conserved currents living on the edge. A Kaç-Moody algebra formed by a subset of the bulk fields is obtained with central charge proportional to the inverse of the Maxwell coupling constant, and the degrees of freedom of the boundary theory are identified as two vector fields, also suggesting that the 3D theory should be a gauge theory. Finally the holographic contact between bulk and boundary theory is reached in two inequivalent ways, both leading to a unique 3D action describing a new gauge theory of two coupled vector fields with a topological Chern-Simons term with massive coefficient. In order to check that the 3D projection of 4D Maxwell theory is well defined, we computed the energy-momentum tensor and the propagators. The role of discrete symmetries is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document