scholarly journals Quantum D = 3 Euclidean and Poincaré symmetries from contraction limits

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jerzy Kowalski-Glikman ◽  
Jerzy Lukierski ◽  
Tomasz Trześniewski

Abstract Following the recently obtained complete classification of quantum-deformed $$ \mathfrak{o} $$ o (4), $$ \mathfrak{o} $$ o (1, 3) and $$ \mathfrak{o} $$ o (2) algebras, characterized by classical r-matrices, we study their inhomogeneous D = 3 quantum IW contractions (i.e. the limit of vanishing cosmological constant), with Euclidean or Lorentzian signature. Subsequently, we compare our results with the complete list of D = 3 inhomogeneous Euclidean and D = 3 Poincaré quantum deformations obtained by P. Stachura. It turns out that the IW contractions allow us to recover all Stachura deformations. We further discuss the applicability of our results in the models of 3D quantum gravity in the Chern-Simons formulation (both with and with- out the cosmological constant), where it is known that the relevant quantum deformations should satisfy the Fock-Rosly conditions. The latter deformations in part of the cases are associated with the Drinfeld double structures, which also have been recently investigated in detail.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexey Sharapov ◽  
Evgeny Skvortsov

Abstract We give a complete classification of dynamical invariants in 3d and 4d Higher Spin Gravity models, with some comments on arbitrary d. These include holographic correlation functions, interaction vertices, on-shell actions, conserved currents, surface charges, and some others. Surprisingly, there are a good many conserved p-form currents with various p. The last fact, being in tension with ‘no nontrivial conserved currents in quantum gravity’ and similar statements, gives an indication of hidden integrability of the models. Our results rely on a systematic computation of Hochschild, cyclic, and Chevalley-Eilenberg cohomology for the corresponding higher spin algebras. A new invariant in Chern-Simons theory with the Weyl algebra as gauge algebra is also presented.


2018 ◽  
Vol 2018 (742) ◽  
pp. 157-186 ◽  
Author(s):  
Yuki Arano

Abstract We study irreducible spherical unitary representations of the Drinfeld double of the q-deformation of a connected simply connected compact Lie group, which can be considered as a quantum analogue of the complexification of the Lie group. In the case of \mathrm{SU}_{q}(3) , we give a complete classification of such representations. As an application, we show the Drinfeld double of the quantum group \mathrm{SU}_{q}(2n+1) has property (T), which also implies central property (T) of the dual of \mathrm{SU}_{q}(2n+1) .


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1130 ◽  
Author(s):  
Stephon Alexander ◽  
Joao Magueijo ◽  
Lee Smolin

We present an extension of general relativity in which the cosmological constant becomes dynamical and turns out to be conjugate to the Chern–Simons invariant of the Ashtekar connection on a spatial slicing. The latter has been proposed Soo and Smolin as a time variable for quantum gravity: the Chern–Simons time. In the quantum theory, the inverse cosmological constant and Chern–Simons time will then become conjugate operators. The “Kodama state” gets a new interpretation as a family of transition functions. These results imply an uncertainty relation between Λ and Chern–Simons time; the consequences of which will be discussed elsewhere.


2020 ◽  
pp. 1-19
Author(s):  
Masaki Matsuno

Abstract Classification of AS-regular algebras is one of the main interests in noncommutative algebraic geometry. We say that a $3$ -dimensional quadratic AS-regular algebra is of Type EC if its point scheme is an elliptic curve in $\mathbb {P}^{2}$ . In this paper, we give a complete list of geometric pairs and a complete list of twisted superpotentials corresponding to such algebras. As an application, we show that there are only two exceptions up to isomorphism among all $3$ -dimensional quadratic AS-regular algebras that cannot be written as a twist of a Calabi–Yau AS-regular algebra by a graded algebra automorphism.


1990 ◽  
Vol 05 (19) ◽  
pp. 3811-3829 ◽  
Author(s):  
STEVEN B. GIDDINGS

The issue of the conformal factor in quantum gravity is examined for Lorentzian signature spacetimes. In Euclidean signature, the “wrong” sign of the conformal action makes the path integral undefined, but in Lorentzian signature this sign is tied to the instability of gravity and once this is accounted for the path integral should be well-defined. In this approach it is not obvious that the Baum-Hawking-Coleman mechanism for suppression of the cosmological constant functions. It is conceivable that since the multiuniverse system exhibits an instability for positive cosmological constant, the dynamics should force the system to zero cosmological constant.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Antonio Amariti ◽  
Marco Fazzi

Abstract We study dualities for 3d $$ \mathcal{N} $$ N = 2 SU(Nc) SQCD at Chern-Simons level k in presence of an adjoint with polynomial superpotential. The dualities are dubbed chiral because there is a different amount of fundamentals Nf and antifundamentals Na. We build a complete classification of such dualities in terms of |Nf− Na| and k. The classification is obtained by studying the flow from the non-chiral case, and we corroborate our proposals by matching the three-sphere partition functions. Finally, we revisit the case of SU(Nc) SQCD without the adjoint, comparing our results with previous literature.


2005 ◽  
Vol 16 (06) ◽  
pp. 595-607 ◽  
Author(s):  
PRISKA JAHNKE ◽  
IVO RADLOFF

The authors give a complete classification of projective threefolds admitting a holomorphic conformal structure. A corollary is the complete list of projective threefolds, whose tangent bundle is a symmetric square.


2016 ◽  
Vol 72 (6) ◽  
pp. 673-683 ◽  
Author(s):  
Mathieu Dutour Sikirić ◽  
Alexey Garber ◽  
Achill Schürmann ◽  
Clara Waldmann

This paper reports on the full classification of Dirichlet–Voronoi polyhedra and Delaunay subdivisions of five-dimensional translational lattices. A complete list is obtained of 110 244 affine types (L-types) of Delaunay subdivisions and it turns out that they are all combinatorially inequivalent, giving the same number of combinatorial types of Dirichlet–Voronoi polyhedra. Using a refinement of corresponding secondary cones, 181 394 contraction types are obtained. The paper gives details of the computer-assisted enumeration, which was verified by three independent implementations and a topological mass formula check.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Amihay Hanany ◽  
Yang-Hui He

We present the complete classification of smooth toric Fano threefolds, known to the algebraic geometry literature, and perform some preliminary analyses in the context of brane tilings and Chern-Simons theory on M2-branes probing Calabi-Yau fourfold singularities. We emphasise that these 18 spaces should be as intensely studied as their well-known counterparts: the del Pezzo surfaces.


Author(s):  
Angel Ballesteros ◽  
Iván Gutiérrez Sagredo ◽  
Francisco Jose Herranz

Abstract The complete classification of classical r-matrices generating quantum deformations of the (3+1)-dimensional (A)dS and Poincar ́e groups such that their Lorentz sector is a quantum sub-group is presented. It is found that there exists three classes of such r-matrices, one of them being a novel two-parametric one. The (A)dS and Minkowskian Poisson homogeneous spaces corresponding to these three deformations are explicitly constructed in both local and ambient coordinates. Their quantization is performed, thus giving rise to the associated noncommutative spacetimes, that in the Minkowski case are naturally expressed in terms of quantum null-plane coordinates, and they are always defined by homogeneous quadratic algebras. Finally, non-relativistic and ultra-relativistic limits giving rise to novel Newtonian and Carrollian noncommutative spacetimes are also presented.


Sign in / Sign up

Export Citation Format

Share Document