regular algebra
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
AYAKO ITABA ◽  
MASAKI MATSUNO

Abstract In noncommutative algebraic geometry an Artin–Schelter regular (AS-regular) algebra is one of the main interests, and every three-dimensional quadratic AS-regular algebra is a geometric algebra, introduced by Mori, whose point scheme is either $\mathbb {P}^{2}$ or a cubic curve in $\mathbb {P}^{2}$ by Artin et al. [‘Some algebras associated to automorphisms of elliptic curves’, in: The Grothendieck Festschrift, Vol. 1, Progress in Mathematics, 86 (Birkhäuser, Basel, 1990), 33–85]. In the preceding paper by the authors Itaba and Matsuno [‘Defining relations of 3-dimensional quadratic AS-regular algebras’, Math. J. Okayama Univ. 63 (2021), 61–86], we determined all possible defining relations for these geometric algebras. However, we did not check their AS-regularity. In this paper, by using twisted superpotentials and twists of superpotentials in the Mori–Smith sense, we check the AS-regularity of geometric algebras whose point schemes are not elliptic curves. For geometric algebras whose point schemes are elliptic curves, we give a simple condition for three-dimensional quadratic AS-regular algebras. As an application, we show that every three-dimensional quadratic AS-regular algebra is graded Morita equivalent to a Calabi–Yau AS-regular algebra.


2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Héctor Suárez ◽  
Duban Cáceres ◽  
Armando Reyes

In this paper, we prove that the Nakayama automorphism of a graded skew PBW extension over a finitely presented Koszul Auslander-regular algebra has trivial homological determinant. For A = σ(R)<x1, x2> a graded skew PBW extension over a connected algebra R, we compute its P-determinant and the inverse of σ. In the particular case of quasi-commutative skew PBW extensions over Koszul Artin-Schelter regular algebras, we show explicitly the connection between the Nakayama automorphism of the ring of coefficients and the extension. Finally, we give conditions to guarantee that A is Calabi-Yau. We provide illustrative examples of the theory concerning algebras of interest in noncommutative algebraic geometry and noncommutative differential geometry.


2020 ◽  
pp. 1-19
Author(s):  
Masaki Matsuno

Abstract Classification of AS-regular algebras is one of the main interests in noncommutative algebraic geometry. We say that a $3$ -dimensional quadratic AS-regular algebra is of Type EC if its point scheme is an elliptic curve in $\mathbb {P}^{2}$ . In this paper, we give a complete list of geometric pairs and a complete list of twisted superpotentials corresponding to such algebras. As an application, we show that there are only two exceptions up to isomorphism among all $3$ -dimensional quadratic AS-regular algebras that cannot be written as a twist of a Calabi–Yau AS-regular algebra by a graded algebra automorphism.


2019 ◽  
Vol 15 (29) ◽  
pp. 157-177
Author(s):  
Héctor Suárez ◽  
Armando Reyes

Let R be an Artin-Schelter regular algebra and A=σ(R)〈x1,...,xn〉be agraded quasi-commutative skew PBW extension overR. In this paper wedescribe the Nakayama automorphism ofAusing the Nakayama automor-phism of the ring of coefficients R. We calculate explicitly the Nakayamaautomorphism of some skew PBW extensions.


2018 ◽  
Vol 2020 (19) ◽  
pp. 6042-6069 ◽  
Author(s):  
Pieter Belmans ◽  
Theo Raedschelders

Abstract A noncommutative deformation of a quadric surface is usually described by a three-dimensional cubic Artin–Schelter regular algebra. In this paper we show that for such an algebra its bounded derived category embeds into the bounded derived category of a commutative deformation of the Hilbert scheme of two points on the quadric. This is the second example in support of a conjecture by Orlov. Based on this example we formulate an infinitesimal version of the conjecture and provide some evidence in the case of smooth projective surfaces.


2017 ◽  
Vol 305 ◽  
pp. 601-660 ◽  
Author(s):  
Theo Raedschelders ◽  
Michel Van den Bergh
Keyword(s):  

2014 ◽  
Vol 54 (2) ◽  
pp. 165-197 ◽  
Author(s):  
Simon Foster ◽  
Georg Struth

2012 ◽  
Vol 55 (2) ◽  
pp. 241-257 ◽  
Author(s):  
IZURU MORI ◽  
KENTA UEYAMA

AbstractClassification of AS-regular algebras is one of the major projects in non-commutative algebraic geometry. In this paper, we will study when given AS-regular algebras are graded Morita equivalent. In particular, for every geometric AS-regular algebra A, we define another graded algebra A, and show that if two geometric AS-regular algebras A and A' are graded Morita equivalent, then A and A' are isomorphic as graded algebras. We also show that the converse holds in many three-dimensional cases. As applications, we apply our results to Frobenius Koszul algebras and Beilinson algebras.


Sign in / Sign up

Export Citation Format

Share Document