scholarly journals Massive event-shape distributions at N2LL

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Alejandro Bris ◽  
Vicent Mateu ◽  
Moritz Preisser

Abstract In a recent paper we have shown how to optimally compute the differential and cumulative cross sections for massive event-shapes at $$ \mathcal{O}\left({\alpha}_s\right) $$ O α s in full QCD. In the present article we complete our study by obtaining resummed expressions for non-recoil-sensitive observables to N2LL + $$ \mathcal{O}\left({\alpha}_s\right) $$ O α s precision. Our results can be used for thrust, heavy jet mass and C-parameter distributions in any massive scheme, and are easily generalized to angularities and other event shapes. We show that the so-called E- and P-schemes coincide in the collinear limit, and compute the missing pieces to achieve this level of accuracy: the P-scheme massive jet function in Soft-Collinear Effective Theory (SCET) and boosted Heavy Quark Effective Theory (bHQET). The resummed expression is subsequently matched into fixed-order QCD to extend its validity towards the tail and far- tail of the distribution. The computation of the jet function cannot be cast as the dis- continuity of a forward-scattering matrix element, and involves phase space integrals in d = 4 − 2ε dimensions. We show how to analytically solve the renormalization group equation for the P-scheme SCET jet function, which is significantly more complicated than its 2-jettiness counterpart, and derive rapidly-convergent expansions in various kinematic regimes. Finally, we perform a numerical study to pin down when mass effects become more relevant.

Author(s):  
Thomas Becher

The lectures that appear within this chapter provide an introduction to soft-collinear effective theory (SCET). It begins by discussing resummation for soft-photon effects in QED, including soft photons in electron–electron scattering and the expansion of loop integrals and the method of regions event-shape variables. It then covers SCET specifically, including the method of regions for the Sudakov form factor, effective Lagrangians, the vector current in SCET, and resummation by renormalization group (RG) evolution. It covers applications of SCET in jet physics, describes the characteristic feature in jet processes of Sudakov logarithms, and discusses factorization for the event-shape variable thrust and factorization and resummation for jet cross sections.


2018 ◽  
Vol 182 ◽  
pp. 02025
Author(s):  
Giuseppe Callea

This contribution gives an overview of the recent measurements of the differential cross sections for final states involving photons and/or jets at the centre-of-mass energies of 8 and 13 TeV, published by the ATLAS Collaboration. The results are compared with several next-to-leading order calculations and with the latest predictions of various Monte Carlo generators. New measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events at 8 TeV are also presented. Both measurements are used to extract the strong coupling constant and test the renormalization group equation.


2016 ◽  
Vol 93 (1) ◽  
Author(s):  
Yang-Ting Chien ◽  
Andrew Hornig ◽  
Christopher Lee

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Simone Alioli ◽  
Alessandro Broggio ◽  
Alessandro Gavardi ◽  
Stefan Kallweit ◽  
Matthew A. Lim ◽  
...  

Abstract We present the NNLL′ resummed 2-jettiness distribution for decays of the Standard Model Higgs boson to a b$$ \overline{b} $$ b ¯ -quark pair and to gluons. The calculation exploits a factorisation formula derived using Soft-Collinear Effective Theory, in which large logarithms of the 2-jettiness are resummed by renormalisation group evolution of the hard, soft and jet contributions to the differential decay rate. We match the resummed predictions to the fixed-order NNLO result using the Geneva framework, extending the validity of the results to all values of the resolution variable and providing a fully exclusive NNLO event generator matched to the Pythia8 parton shower.


2013 ◽  
Vol 28 (20) ◽  
pp. 1350098 ◽  
Author(s):  
FABIO SIRINGO

Using soft-collinear effective theory, the leading-log radiative electroweak corrections are written in a closed and analytical form for the hadronic cross-section of Higgs production through vector boson fusion, qq → qqH, one of the most promising channels for studying the Higgs boson at Large Hadron Collider (LHC). The simple leading-log resummation is compared with a full next-to-leading-log calculation, and its accuracy is found to be of order 1% up to 10 TeV, i.e. better than the accuracy of parton distribution functions. Corrections are found to be larger than predicted by one-loop fixed-order approximations at LHC energies. The method provides a simple way of incorporating the electroweak corrections in software packages, improving the accuracy of simulations.


2015 ◽  
Vol 37 ◽  
pp. 1560045 ◽  
Author(s):  
Christopher Lee

Soft Collinear Effective Theory (SCET) is an effective field theory of Quantum Chromodynamics (QCD) for processes where there are energetic, nearly lightlike degrees of freedom interacting with one another via soft radiation. SCET has found many applications in high-energy and nuclear physics, especially in recent years the physics of hadronic jets in e+e-, lepton-hadron, hadron-hadron, and heavy-ion collisions. SCET can be used to factorize multi-scale cross sections in these processes into single-scale hard, collinear, and soft functions, and to evolve these through the renormalization group to resum large logarithms of ratios of the scales that appear in the QCD perturbative expansion, as well as to study properties of nonperturbative effects. We overview the elementary concepts of SCET and describe how they can be applied in high-energy and nuclear physics.


2014 ◽  
Vol 25 ◽  
pp. 1460041 ◽  
Author(s):  
ZHONG-BO KANG ◽  
XIAOHUI LIU ◽  
SONNY MANTRY ◽  
JIANWEI QIU

We propose the use of 1-jettiness, a global event shape, for exclusive single jet production in lepton-nucleus deep inelastic scattering (DIS). We derive a factorization formula, using the Soft-Collinear Effective Theory, differential in the transverse momentum and rapidity of the jet and the 1-jettiness event shape. It provides a quantitative measure of the shape of the final-state QCD radiation in the presence of the hard jet, providing a useful powerful probe of QCD and nuclear physics. For example, one expects differences in the observed pattern of QCD radiation between large and small nuclei and these can be quantified by the 1-jettiness event shape. Numerical results are given for this new DIS event shape at leading twist with resummation at the next-to-next-to-leading logarithmic (NNLL) level of accuracy, for a variety of nuclear targets. Such studies would be ideal at a future EIC or LHeC electron-ion collider, where a range of nuclear targets are planned.


Sign in / Sign up

Export Citation Format

Share Document