On the local well-posedness of strong solutions to 3D MHD equations with Hall and ion-slip effects

Author(s):  
Xiaopeng Zhao
2015 ◽  
Vol 66 (4) ◽  
pp. 1695-1706 ◽  
Author(s):  
Jishan Fan ◽  
Xuanji Jia ◽  
Gen Nakamura ◽  
Yong Zhou
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
pp. 702-725
Author(s):  
Zilai Li ◽  
Huaqiao Wang ◽  
Yulin Ye

Abstract In this paper, the Cauchy problem for the one-dimensional compressible isentropic magnetohydrodynamic (MHD) equations with no vacuum at infinity is considered, but the initial vacuum can be permitted inside the region. By deriving a priori ν (resistivity coefficient)-independent estimates, we establish the non-resistive limit of the global strong solutions with large initial data. Moreover, as a by-product, the global well-posedness of strong solutions for the compressible resistive MHD equations is also established.


2021 ◽  
Vol 10 (1) ◽  
pp. 1235-1254
Author(s):  
Qiang Tao ◽  
Canze Zhu

Abstract This paper deals with a Cauchy problem of the full compressible Hall-magnetohydrodynamic flows. We establish the existence and uniqueness of global solution, provided that the initial energy is suitably small but the initial temperature allows large oscillations. In addition, the large time behavior of the global solution is obtained.


Sign in / Sign up

Export Citation Format

Share Document