asymptotic behavior of solutions
Recently Published Documents


TOTAL DOCUMENTS

1100
(FIVE YEARS 169)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
S. Şule Şener Kiliç

In this paper, we study the generalized ([Formula: see text])-dimensional Hietarinta equation which is investigated by utilizing Hirota’s bilinear method. Also, the bilinear form is obtained, and the N-soliton solutions are constructed. In addition, multi-wave and breather wave solutions of the addressed equation with specific coefficients are presented. Finally, under certain conditions, the asymptotic behavior of solutions is analyzed in both methods. Moreover, we employ the linear superposition principle to determine [Formula: see text]-soliton wave solutions for the generalized ([Formula: see text])-dimensional Hietarinta equation.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 180
Author(s):  
Oleg Avsyankin

The multidimensional integral equation of second kind with a homogeneous of degree (−n) kernel is considered. The special class of continuous functions with a given asymptotic behavior in the neighborhood of zero is defined. It is proved that, if the free term of the integral equation belongs to this class and the equation itself is solvable, then its solution also belongs to this class. To solve this problem, a special research technique is used. The above-mentioned technique is based on the decomposition of both the solution and the free term in spherical harmonics.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jingyu Wang ◽  
Yejuan Wang ◽  
Tomás Caraballo

<p style='text-indent:20px;'>This paper is devoted to the asymptotic behavior of solutions to a non-autonomous stochastic wave equation with infinite delays and additive white noise. The nonlinear terms of the equation are not expected to be Lipschitz continuous, but only satisfy continuity assumptions along with growth conditions, under which the uniqueness of the solutions may not hold. Using the theory of multi-valued non-autonomous random dynamical systems, we prove the existence and measurability of a compact global pullback attractor.</p>


Author(s):  
Cládio O. P. Da Silva ◽  
Aldo T. Louredo ◽  
Manuel Milla Miranda

2021 ◽  
pp. 1-35
Author(s):  
Nakao Hayashi ◽  
Elena I. Kaikina ◽  
Pavel I. Naumkin ◽  
Takayoshi Ogawa

We study the nonlinear Neumann boundary value problem for semilinear heat equation ∂ t u − Δ u = λ | u | p , t > 0 , x ∈ R + n , u ( 0 , x ) = ε u 0 ( x ) , x ∈ R + n , − ∂ x u ( t , x ′ , 0 ) = γ | u | q ( t , x ′ , 0 ) , t > 0 , x ′ ∈ R n − 1 where p = 1 + 2 n , q = 1 + 1 n and ε > 0 is small enough. We investigate the life span of solutions for λ , γ > 0. Also we study the global in time existence and large time asymptotic behavior of solutions in the case of λ , γ < 0 and ∫ R + n u 0 ( x ) d x > 0.


2021 ◽  
pp. 1-19
Author(s):  
Natsumi Yoshida

In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem with the far field condititon for the generalized Benjamin–Bona–Mahony–Burgers equation with a fourth-order dissipative term. When the corresponding Riemann problem for the hyperbolic part admits a Riemann solution which consists of single rarefaction wave, it is proved that the solution of the Cauchy problem tends toward the rarefaction wave as time goes to infinity. We can further obtain the same global asymptotic stability of the rarefaction wave to the generalized Korteweg–de Vries–Benjamin–Bona–Mahony–Burgers equation with a fourth-order dissipative term as the former one.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3064
Author(s):  
Maria A. Skvortsova

We consider a system of differential equations with two delays describing plankton–fish interaction. We analyze the case when the equilibrium point of this system corresponding to the presence of only phytoplankton and the absence of zooplankton and fish is asymptotically stable. In this case, the asymptotic behavior of solutions to the system is studied. We establish estimates of solutions characterizing the stabilization rate at infinity to the considered equilibrium point. The results are obtained using Lyapunov–Krasovskii functionals.


2021 ◽  
pp. 1-16
Author(s):  
Nouri Boumaza ◽  
Billel Gheraibia

In this paper, we consider the initial boundary value problem for the p-Laplacian equation with weak and p-Laplacian damping terms, nonlinear boundary, delay and source terms acting on the boundary. By introducing suitable energy and perturbed Lyapunov functionals, we prove global existence, finite time blow up and asymptotic behavior of solutions in cases p > 2 and p = 2. To our best knowledge, there is no results of the p-Laplacian equation with a nonlinear boundary delay term.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yassine Letoufa ◽  
Hamid Benseridi ◽  
Salah Boulaaras ◽  
Mourad Dilmi

AbstractThe quasistatic problem of a viscoelastic body in a three-dimensional thin domain with Tresca’s friction law is considered. The viscoelasticity coefficients and data for this system are assumed to vary with respect to the thickness ε. The asymptotic behavior of weak solution, when ε tends to zero, is proved, and the limit solution is identified in a new data system. We show that when the thin layer disappears, its traces form a new contact law between the rigid plane and the viscoelastic body. In which case, a generalized weak form equation is formulated, the uniqueness result for the limit problem is also proved.


2021 ◽  
pp. 1-18
Author(s):  
Chunyi Li ◽  
Chaoqun Song ◽  
LiYan Quan ◽  
Jianhao Xiang ◽  
Mingqi Xiang

The aim of this paper is to consider the following fractional parabolic problem u t + ( − Δ ) p α u + ( − Δ ) q β u = f ( x , u ) ( x , t ) ∈ Ω × ( 0 , ∞ ) , u = 0 ( x , t ) ∈ ( R N ∖ Ω ) × ( 0 , ∞ ) , u ( x , 0 ) = u 0 ( x ) x ∈ Ω , where Ω ⊂ R N is a bounded domain with Lipschitz boundary, ( − Δ ) p α is the fractional p-Laplacian with 0 < α < 1 < p < ∞, ( − Δ ) q β is the fractional q-Laplacian with 0 < β < α < 1 < q < p < ∞, r > 1 and λ > 0. The global existence of nonnegative solutions is obtained by combining the Galerkin approximations with the potential well theory. Then, by virtue of a differential inequality technique, we give a decay estimate of solutions.


Sign in / Sign up

Export Citation Format

Share Document