On the existence of unique global-in-time solutions and temporal decay rates of solutions to some non-Newtonian incompressible fluids

Author(s):  
Hantaek Bae ◽  
Kyungkeun Kang
Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.


Author(s):  
S. V. Rajopadhye

We study the large-time behaviour of solutions to the Korteweg-de Vries-Burgers equation with bore-like initial data. This work relies on the methods of Amick, Bona and Schonbeck to obtain sharp rates of temporal decay of certain norms of the solution, thus obtaining an improvement over results of Naumkin and Shishmarev.


Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.


2009 ◽  
Vol 642 ◽  
pp. 373-394 ◽  
Author(s):  
P.-Å. KROGSTAD ◽  
P. A. DAVIDSON

There has been a longstanding debate as to whether the large scales in grid turbulence should be classified as of the Batchelor or Saffman type. In the former, the integral scales, u and ℓ, satisfy u2ℓ5 ≈ constant, while in Saffman turbulence we have u2ℓ3 = constant. For strictly homogeneous turbulence the energy decay rates in these two types of turbulence differ, with u2 ~ t−10/7 in Batchelor turbulence and u2 ~ t−6/5 in Saffman turbulence. We present high-resolution measurements of grid turbulence taken in a large wind tunnel. The particularly large test section allows us to measure energy decay exponents with high accuracy. We find that the turbulence behind the grid is almost certainly of the Saffman type, with u2ℓ3 = constant. The measured energy decay exponent, however, is found to lie slightly below the theoretical prediction of u2 ~ t−1.2. Rather we find u2 ~ t−n, with n = 1.13±0.02. This discrepancy is shown to arise from a weak temporal decay of the dimensionless energy dissipation coefficient, εℓ/u3, which is normally taken to be constant in strictly homogeneous turbulence, but which varies very slowly in grid turbulence.


Author(s):  
Jihong Zhao ◽  
Xilan Liu

We are concerned with the global existence and decay rates of large solutions for the Poisson–Nernst–Planck equations. Based on careful observation of algebraic structure of the equations and using the weighted Chemin–Lerner type norm, we obtain the global existence and optimal decay rates of large solutions without requiring the summation of initial densities of a negatively and positively charged species is small enough. Moreover, the large solution is obtained for initial data belonging to the low regularity Besov spaces with different regularity and integral indices for the different charged species, which indicates more specific coupling relations between the negatively and positively charged species.


2002 ◽  
Vol 2 (3) ◽  
pp. 131-138 ◽  
Author(s):  
D.L. Craig ◽  
H.J. Fallowfield ◽  
N.J. Cromar

A laboratory based microcosm study utilising intact non-sterile sediment cores was undertaken to determine the survival of the faecal indicator organisms Escherichia coli, Enterococcus faecium and somatic coliphage in both recreational coastal water and sediment. Overlying water was inoculated with the test organisms and incubated at 10°C, 20°C or 30°C. E. coli, enterococcus and coliphage were enumerated from the water column and sediment by the membrane filtration method, Enterolert (IDEXX Laboratories) and the double-agar overlay methods respectively on days 0, 1, 2, 7, 14 and 28 following inoculation. It was demonstrated that for all organisms, greater decay (k; d-1) occurred in the water column compared to sediment. Sediment characteristics were found to influence decay, with lowest decay rates observed in sediment consisting of high organic carbon content and small particle size. Decay of E. coli was significantly greater in both the water column and sediment compared with enterococcus and coliphage under all conditions. Decay of enterococcus was found to closely resemble that of coliphage decay. Survival of all organisms was inversely related to temperature, with greatest decay at 30°C. However, increased temperature had a less significant impact on survival of enterococcus and coliphage compared with E. coli. The importance of this study for estimating risk from recreational exposure is great if some pathogenic microorganisms behave similarly to the organisms tested in this study. In particular if survival rates of pathogens are similar to enterococcus and coliphage, then their ability to accumulate in coastal sediment may lead to an increased risk of exposure if these organisms are resuspended into the water column due to natural turbulence or human recreational activity.


2014 ◽  
Vol 132 (1) ◽  
pp. 427-437 ◽  
Author(s):  
Andrea Mentrelli ◽  
Tommaso Ruggeri

Sign in / Sign up

Export Citation Format

Share Document