Temporal and spatial decays for the Navier–Stokes equations

Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.

Author(s):  
Hyeong-Ohk Bae ◽  
Bum Ja Jin

We obtain spatial and temporal decay rates of weak solutions of the Navier–Stokes equations, and for strong solutions. For the spatial decay rate of the weak solutions, the power of the weight given by He and Xin in 2001 does not exceed 3/2;. However, we show the power can be extended up to 5/2;.


2006 ◽  
Vol 6 (3) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractWe prove the existence and uniqueness of strong solutions of a three dimensional system of globally modified Navier-Stokes equations. The flattening property is used to establish the existence of global V -attractors and a limiting argument is then used to obtain the existence of bounded entire weak solutions of the three dimensional Navier-Stokes equations with time independent forcing.


Author(s):  
Cheng He ◽  
Zhouping Xin

In this paper, we study the asymptotic decay properties in both spatial and temporal variables for a class of weak and strong solutions, by constructing the weak and strong solutions in corresponding weighted spaces. It is shown that, for the strong solution, the rate of temporal decay depends on the rate of spatial decay of the initial data. Such rates of decay are optimal.


Author(s):  
Cheng He ◽  
Zhouping Xin

In this paper, we study the asymptotic decay properties in both spatial and temporal variables for a class of weak and strong solutions, by constructing the weak and strong solutions in corresponding weighted spaces. It is shown that, for the strong solution, the rate of temporal decay depends on the rate of spatial decay of the initial data. Such rates of decay are optimal.


Sign in / Sign up

Export Citation Format

Share Document