scholarly journals Unitarization of the Horocyclic Radon Transform on Homogeneous Trees

2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Francesca Bartolucci ◽  
Filippo De Mari ◽  
Matteo Monti

AbstractFollowing previous work in the continuous setup, we construct the unitarization of the horocyclic Radon transform on a homogeneous tree X and we show that it intertwines the quasi regular representations of the group of isometries of X on the tree itself and on the space of horocycles.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sumit Kumar Rano

Abstract Let 𝔛 {\mathfrak{X}} be a homogeneous tree and let ℒ {\mathcal{L}} be the Laplace operator on 𝔛 {\mathfrak{X}} . In this paper, we address problems of the following form: Suppose that { f k } k ∈ ℤ {\{f_{k}\}_{k\in\mathbb{Z}}} is a doubly infinite sequence of functions in 𝔛 {\mathfrak{X}} such that for all k ∈ ℤ {k\in\mathbb{Z}} one has ℒ ⁢ f k = A ⁢ f k + 1 {\mathcal{L}f_{k}=Af_{k+1}} and ∥ f k ∥ ≤ M {\lVert f_{k}\rVert\leq M} for some constants A ∈ ℂ {A\in\mathbb{C}} , M > 0 {M>0} and a suitable norm ∥ ⋅ ∥ {\lVert\,\cdot\,\rVert} . From this hypothesis, we try to infer that f 0 {f_{0}} , and hence every f k {f_{k}} , is an eigenfunction of ℒ {\mathcal{L}} . Moreover, we express f 0 {f_{0}} as the Poisson transform of functions defined on the boundary of 𝔛 {\mathfrak{X}} .


2010 ◽  
Vol 21 (10) ◽  
pp. 1337-1382 ◽  
Author(s):  
U. HAAGERUP ◽  
T. STEENSTRUP ◽  
R. SZWARC

Let X be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞) and let ψ : X × X → ℂ be a function for which ψ(x, y) only depends on the distance between x, y ∈ X. Our main result gives a necessary and sufficient condition for such a function to be a Schur multiplier on X × X. Moreover, we find a closed expression for the Schur norm ||ψ||S of ψ. As applications, we obtaina closed expression for the completely bounded Fourier multiplier norm ||⋅||M0A(G) of the radial functions on the free (non-abelian) group 𝔽N on N generators (2 ≤ N ≤ ∞) and of the spherical functions on the q-adic group PGL2(ℚq) for every prime number q.


1992 ◽  
Vol 78 (2-3) ◽  
pp. 363-380 ◽  
Author(s):  
Enrico Casadio Tarabusi ◽  
Joel M. Cohen ◽  
Massimo A. Picardello

Author(s):  
Alberto G. Setti

AbstractLet be a homogeneous tree of degree at least three. In this paper we investigate for which values of p and r the (σθ)-Poisson semigroup is Lp – Lr,-bounded, and we sharp estimate for the corresponding operator norms.


1999 ◽  
Vol 59 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Michael Cowling ◽  
Alberto G. Setti

Let be a homogeneous tree, o be a fixed reference point in , and be the closed ball of radius N in centred at o. In this paper we characterise the image under the Helgason–Fourier transformation ℋ of , the space of functions supported in , and of , the space of rapidly decreasing functions on . In both cases our results are counterparts of known results for the Helgason–Fourier transformation on noncompact symmetric spaces.


2005 ◽  
Vol 15 (03) ◽  
pp. 503-527 ◽  
Author(s):  
TULLIO G. CECCHERINI-SILBERSTEIN ◽  
YURIJ G. LEONOV ◽  
FABIO SCARABOTTI ◽  
FILIPPO TOLLI

We show that the Lie action of the Kaloujnine group K(p,n) on the vector space (Fp)pn is uniserial. Using some Radon transform techniques we derive a formula for the height of the elements in K(p,n). A generalization of the Kaloujnine groups is introduced by considering automorphisms of a spherically homogeneous tree. We observe that uniseriality fails to hold for these groups and determine their lower central series; finally we discuss in detail Kaloujnine's description of the characteristic subgroups in terms of the (normal) "parallelotopic" subgroups.


2012 ◽  
Vol 21 (3) ◽  
pp. 374-411 ◽  
Author(s):  
PANDELIS DODOS ◽  
VASSILIS KANELLOPOULOS ◽  
KONSTANTINOS TYROS

A tree T is said to be homogeneous if it is uniquely rooted and there exists an integer b ≥ 2, called the branching number of T, such that every t ∈ T has exactly b immediate successors. We study the behaviour of measurable events in probability spaces indexed by homogeneous trees.Precisely, we show that for every integer b ≥ 2 and every integer n ≥ 1 there exists an integer q(b,n) with the following property. If T is a homogeneous tree with branching number b and {At:t ∈ T} is a family of measurable events in a probability space (Ω,Σ,μ) satisfying μ(At)≥ϵ>0 for every t ∈ T, then for every 0<θ<ϵ there exists a strong subtree S of T of infinite height, such that for every finite subset F of S of cardinality n ≥ 1 we have In fact, we can take q(b,n)= ((2b−1)2n−1−1)·(2b−2)−1. A finite version of this result is also obtained.


Author(s):  
Anna Maria Mantero ◽  
Anna Zappa

AbstractLet G be a group acting faithfully on a homogeneous tree of order p + 1, p > 1. Let be the space of functions on the Poission boundary ω, of zero mean on ω. When p is a prime. G is a discrete subgroup of PGL2(Qp) of finite covolume. The representations of the special series of PGL2(Qp), Which are irreducible and unitary in an appropriate completion of , are shown to be reducible when restricted to G. It is proved that these representations of G are algebraically reducible on and topologically irreducible on endowed with the week topology.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Enrico Casadio Tarabusi ◽  
Massimo A. Picardello

AbstractIn the hyperbolic disc (or more generally in real hyperbolic spaces) we consider the horospherical Radon transform R and the geodesic Radon transform X. Composition with their respective dual operators yields two convolution operators on the disc (with respect to the hyperbolic measure). We describe their convolution kernels in comparison with those of the corresponding operators on a homogeneous tree T, separately studied as acting on functions on the vertices or on the edges. This leads to a new theory of spherical functions and Radon inversion on the edges of a tree.


Sign in / Sign up

Export Citation Format

Share Document