sequence of functions
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 1)

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Yasunori Kimura ◽  
Keisuke Shindo

The asymptotic behavior of resolvents of a proper convex lower semicontinuous function is studied in the various settings of spaces. In this paper, we consider the asymptotic behavior of the resolvents of a sequence of functions defined in a complete geodesic space. To obtain the result, we assume the Mosco convergence of the sets of minimizers of these functions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sumit Kumar Rano

Abstract Let 𝔛 {\mathfrak{X}} be a homogeneous tree and let ℒ {\mathcal{L}} be the Laplace operator on 𝔛 {\mathfrak{X}} . In this paper, we address problems of the following form: Suppose that { f k } k ∈ ℤ {\{f_{k}\}_{k\in\mathbb{Z}}} is a doubly infinite sequence of functions in 𝔛 {\mathfrak{X}} such that for all k ∈ ℤ {k\in\mathbb{Z}} one has ℒ ⁢ f k = A ⁢ f k + 1 {\mathcal{L}f_{k}=Af_{k+1}} and ∥ f k ∥ ≤ M {\lVert f_{k}\rVert\leq M} for some constants A ∈ ℂ {A\in\mathbb{C}} , M > 0 {M>0} and a suitable norm ∥ ⋅ ∥ {\lVert\,\cdot\,\rVert} . From this hypothesis, we try to infer that f 0 {f_{0}} , and hence every f k {f_{k}} , is an eigenfunction of ℒ {\mathcal{L}} . Moreover, we express f 0 {f_{0}} as the Poisson transform of functions defined on the boundary of 𝔛 {\mathfrak{X}} .


Author(s):  
Ilya Goldsheid

Abstract Let $(\xi _j)_{j\ge 1} $ be a non-stationary Markov chain with phase space $X$ and let $\mathfrak {g}_j:\,X\mapsto \textrm {SL}(m,{\mathbb {R}})$ be a sequence of functions on $X$ with values in the unimodular group. Set $g_j=\mathfrak {g}_j(\xi _j)$ and denote by $S_n=g_n\ldots g_1$, the product of the matrices $g_j$. We provide sufficient conditions for exponential growth of the norm $\|S_n\|$ when the Markov chain is not supposed to be stationary. This generalizes the classical theorem of Furstenberg on the exponential growth of products of independent identically distributed matrices as well as its extension by Virtser to products of stationary Markov-dependent matrices.


2021 ◽  
Vol 78 (1) ◽  
pp. 129-138
Author(s):  
Grażyna Horbaczewska ◽  
Patrycja Rychlewicz

Abstract Egoroff’s classical theorem shows that from a pointwise convergence we can get a uniform convergence outside the set of an arbitrary small measure. Taylor’s theorem shows the possibility of controlling the convergence of the sequences of functions on the set of the full measure. Namely, for every sequence of real-valued measurable factions |fn } n∈ℕ pointwise converging to a function f on a measurable set E, there exist a decreasing sequence |δn } n∈ℕ of positive reals converging to 0 and a set A ⊆ E such that E \ A is a nullset and lim n → + ∞ | f n ( x ) − f ( x ) | δ n = 0   for   all   x ∈ A .   Let   J ( A ,   { f n } ) {\lim _{n \to + \infty }}\frac{{|{f_n}(x) - f(x)|}}{{{\delta _n}}} = 0\,{\rm{for}}\,{\rm{all}}\,x \in A.\,{\rm{Let}}\,J(A,\,\{ {f_n}\} ) denote the set of all such sequences |δn } n∈ℕ. The main results of the paper concern basic properties of sets of all such sequences for a given set A and a given sequence of functions. A relationship between pointwise convergence, uniform convergence and the Taylor’s type of convergence is considered.


Author(s):  
Tuan Trinh

In this work, we study the Watson-type integral transforms for the convolutions related to the Hartley and Fourier transformations. We establish necessary and sufficient conditions for these operators to be unitary in the L 2 (R) space and get their inverse represented in the conjugate symmetric form. Furthermore, we also formulated the Plancherel-type theorem for the aforementioned operators and prove a sequence of functions that converge to the original function in the defined L 2 (R) norm. Next, we study the boundedness of the operators (T k ). Besides, showing the obtained results, we demonstrate how to use it to solve the class of integro-differential equations of Barbashin type, the differential equations, and the system of differential equations. And there are numerical examples given to illustrate these.


Author(s):  
Erdinç Dündar ◽  
Uǧur Ulusu

The authors of the present paper, firstly, investigated relations between the notions of rough convergence and classical convergence, and studied on some properties of the rough convergence notion which the set of rough limit points and rough cluster points of a sequence of functions defined on amenable semigroups. Then, they examined the dependence of r-limit LIMrf of a fixed function f ∈ G on varying parameter r.


Author(s):  
Dennis Gallenmüller

AbstractLet $$\mathcal {B}$$ B be a homogeneous differential operator of order $$l=1$$ l = 1 or $$l=2$$ l = 2 . We show that a sequence of functions of the form $$(\mathcal {B}u_j)_j$$ ( B u j ) j converging in the $$L^1$$ L 1 -sense to a compact, convex set K can be modified into a sequence converging uniformly to this set provided that the derivatives of order l are uniformly bounded. We prove versions of our result on the whole space, an open domain, and for K varying uniformly continuously on an open, bounded domain. This is a conditional generalization of a theorem proved by S. Müller for sequences of gradients. Moreover, a potential of order two for the linearized isentropic Euler system is constructed.


2021 ◽  
Vol 71 (2) ◽  
pp. 423-428
Author(s):  
Olena Karlova

Abstract We characterize the uniform convergence points set of a pointwisely convergent sequence of real-valued functions defined on a perfectly normal space. We prove that if X is a perfectly normal space which can be covered by a disjoint sequence of dense subsets and A ⊆ X, then A is the set of points of the uniform convergence for some convergent sequence (fn ) n∈ω of functions fn : X → ℝ if and only if A is Gδ -set which contains all isolated points of X. This result generalizes a theorem of Ján Borsík published in 2019.


Sign in / Sign up

Export Citation Format

Share Document