An efficient short-time Fourier transform algorithm for grinding wheel condition monitoring through acoustic emission

2021 ◽  
Vol 113 (1-2) ◽  
pp. 585-603
Author(s):  
Wenderson N. Lopes ◽  
Pedro O. C. Junior ◽  
Paulo R. Aguiar ◽  
Felipe A. Alexandre ◽  
Fábio R. L. Dotto ◽  
...  
2021 ◽  
Vol 33 (10) ◽  
pp. 3513
Author(s):  
Kun-Ying Li ◽  
Yue-Feng Lin ◽  
Ming-Yi Tsai ◽  
I-Cheng Chiu ◽  
Jyun-Yan Chen

2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1054
Author(s):  
Guo Bi ◽  
Shan Liu ◽  
Shibo Su ◽  
Zhongxue Wang

Acoustic emission (AE) phenomenon has a direct relationship with the interaction of tool and material which makes AE the most sensitive one among various process variables. However, its prominent sensitivity also means the characteristics of random and board band. Feature representation is a difficult problem for AE-based monitoring and determines the accuracy of monitoring system. It is knottier for the situation of using diamond wheel grinding optical components, not only because of the complexity of grinding process but also the high requirement on surface and subsurface quality. This paper is dedicated to AE-based condition monitoring of diamond wheel during grinding brittle materials and feature representation is paid more attention. AE signal of brittle-regime grinding is modeled as a superposition of a series of burst-type AE events. Theory analysis manifested that original time waveform and frequency spectrum are all suitable for feature representation. Considering the convolution form of b-AE in time domain, a convolutional neural network with original time waveform of AE signals as the input is built for multi-class classification of wheel state. Detailed state division in a wheel’s whole life cycle is realized and the accuracy is over 90%. Different from the overlapping in time domain, AE components of different crack mechanisms are probably separated in frequency domain. From this point of view, AE spectrums are more suitable for feature extraction than the original time waveform. In addition, the time sequence of AE samples is essential for the evaluation of wheel’s life elapse and making use of sequential information is just the idea behind recurrent neural network (RNN). Therefore, long short-term memory (LSTM), a special kind of RNN, is used to build a regression prediction model of wheel state with AE spectrums as the model input and satisfactory prediction accuracy is acquired on the test set.


Author(s):  
Rahul Balamurugan ◽  
Fatima Al-Janahi ◽  
Oumaima Bouhali ◽  
Sawsan Shukri ◽  
Kais Abdulmawjood ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 277
Author(s):  
Ivan Grcić ◽  
Hrvoje Pandžić ◽  
Damir Novosel

Fault detection in microgrids presents a strong technical challenge due to the dynamic operating conditions. Changing the power generation and load impacts the current magnitude and direction, which has an adverse effect on the microgrid protection scheme. To address this problem, this paper addresses a field-transform-based fault detection method immune to the microgrid conditions. The faults are simulated via a Matlab/Simulink model of the grid-connected photovoltaics-based DC microgrid with battery energy storage. Short-time Fourier transform is applied to the fault time signal to obtain a frequency spectrum. Selected spectrum features are then provided to a number of intelligent classifiers. The classifiers’ scores were evaluated using the F1-score metric. Most classifiers proved to be reliable as their performance score was above 90%.


2007 ◽  
Vol 329 ◽  
pp. 15-20 ◽  
Author(s):  
Xun Chen ◽  
James Griffin

The material removal in grinding involves rubbing, ploughing and cutting. For grinding process monitoring, it is important to identify the effects of these different phenomena experienced during grinding. A fundamental investigation has been made with single grit cutting tests. Acoustic Emission (AE) signals would give the information relating to the groove profile in terms of material removal and deformation. A combination of filters, Short-Time Fourier Transform (STFT), Wavelets Transform (WT), statistical windowing of the WT with the kurtosis, variance, skew, mean and time constant measurements provided the principle components for classifying the different grinding phenomena. Identification of different grinding phenomena was achieved from the principle components being trained and tested against a Neural Network (NN) representation.


Sign in / Sign up

Export Citation Format

Share Document