scholarly journals Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L

2020 ◽  
Vol 37 (10) ◽  
pp. 1057-1066 ◽  
Author(s):  
Yuyang Guo ◽  
Yongqiang Yu ◽  
Pengfei Lin ◽  
Hailong Liu ◽  
Bian He ◽  
...  

Abstract The three-member historical simulations by the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model, version f3-L (CAS FGOALS-f3-L), which is contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6), are described in this study. The details of the CAS FGOALS-f3-L model, experiment settings and output datasets are briefly introduced. The datasets include monthly and daily outputs from the atmospheric, oceanic, land and sea-ice component models of CAS FGOALS-f3-L, and all these data have been published online in the Earth System Grid Federation (ESGF, https://esgf-node.llnl.gov/projects/cmip6/). The three ensembles are initialized from the 600th, 650th and 700th model year of the preindustrial experiment (piControl) and forced by the same historical forcing provided by CMIP6 from 1850 to 2014. The performance of the coupled model is validated in comparison with some recent observed atmospheric and oceanic datasets. It is shown that CAS FGOALS-f3-L is able to reproduce the main features of the modern climate, including the climatology of air surface temperature and precipitation, the long-term changes in global mean surface air temperature, ocean heat content and sea surface steric height, and the horizontal and vertical distribution of temperature in the ocean and atmosphere. Meanwhile, like other state-of-the-art coupled GCMs, there are still some obvious biases in the historical simulations, which are also illustrated. This paper can help users to better understand the advantages and biases of the model and the datasets.

Author(s):  
Xinyao Rong ◽  
Jian Li ◽  
Haoming Chen ◽  
Jingzhi Su ◽  
Lijuan Hua ◽  
...  

AbstractThis paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences (CAMS) climate system model (CAMS-CSM), which are contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6). The model description, experiment design and model outputs are presented. Three members’ historical experiments are conducted by CAMS-CSM, with two members starting from different initial conditions, and one excluding the stratospheric aerosol to identify the effect of volcanic eruptions. The outputs of the historical experiments are also validated using observational data. It is found that the model can reproduce the climatological mean states and seasonal cycle of the major climate system quantities, including the surface air temperature, precipitation, and the equatorial thermocline. The long-term trend of air temperature and precipitation is also reasonably captured by CAMS-CSM. There are still some biases in the model that need further improvement. This paper can help the users to better understand the performance and the datasets of CAMS-CSM.


2011 ◽  
Vol 24 (19) ◽  
pp. 5108-5124 ◽  
Author(s):  
Liwei Jia ◽  
Timothy DelSole

A new statistical optimization method is used to identify components of surface air temperature and precipitation on six continents that are predictable in multiple climate models on multiyear time scales. The components are identified from unforced “control runs” of the Coupled Model Intercomparison Project phase 3 dataset. The leading predictable components can be calculated in independent control runs with statistically significant skill for 3–6 yr for surface air temperature and 1–3 yr for precipitation, depending on the continent, using a linear regression model with global sea surface temperature (SST) as a predictor. Typically, lag-correlation maps reveal that the leading predictable components of surface air temperature are related to two types of SST patterns: persistent patterns near the continent itself and an oscillatory ENSO-like pattern. The only exception is Europe, which has no significant ENSO relation. The leading predictable components of precipitation are significantly correlated with an ENSO-like SST pattern. No multiyear predictability of land precipitation could be verified in Europe. The squared multiple correlations of surface air temperature and precipitation for nonzero lags on each continent are less than 0.4 in the first year, implying that less than 40% of variations of the leading predictable component can be predicted from global SST. The predictable components describe the spatial structures that can be predicted on multiyear time scales in the absence of anthropogenic and natural forcing, and thus provide a scientific rationale for regional prediction on multiyear time scales.


Author(s):  
Lijuan Li ◽  
Pengfei Lin ◽  
Yongqiang Yu ◽  
Bin Wang ◽  
Tianjun Zhou ◽  
...  

Author(s):  
Shuwen Zhao ◽  
Yongqiang Yu ◽  
Pengfei Lin ◽  
Hailong Liu ◽  
Bian He ◽  
...  

AbstractThe datasets for the tier-1 Scenario Model Intercomparison Project (ScenarioMIP) experiments from the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System model, finite-volume version 3 (CAS FGOALS-f3-L) are described in this study. ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Considering future CO2, CH4, N2O and other gases’ concentrations, as well as land use, the design of ScenarioMIP involves eight pathways, including two tiers (tier-1 and tier-2) of priority. Tier-1 includes four combined Shared Socioeconomic Pathways (SSPs) with radiative forcing, i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6, 4.5, 7.0 and 8.5 W m−2, respectively. This study provides an introduction to the ScenarioMIP datasets of this model, such as their storage location, sizes, variables, etc. Preliminary analysis indicates that surface air temperatures will increase by about 1.89°C, 3.07°C, 4.06°C and 5.17°C by around 2100 under these four scenarios, respectively. Meanwhile, some other key climate variables, such as sea-ice extension, precipitation, heat content, and sea level rise, also show significant long-term trends associated with the radiative forcing increases. These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.


2013 ◽  
Vol 26 (19) ◽  
pp. 7708-7719 ◽  
Author(s):  
Marco Gaetani ◽  
Elsa Mohino

Abstract In this study the capability of eight state-of-the-art ocean–atmosphere coupled models in predicting the monsoonal precipitation in the Sahel on a decadal time scale is assessed. To estimate the importance of the initialization, the predictive skills of two different CMIP5 experiments are compared, a set of 10 decadal hindcasts initialized every 5 years in the period 1961–2009 and the historical simulations in the period 1961–2005. Results indicate that predictive skills are highly model dependent: the Fourth Generation Canadian Coupled Global Climate Model (CanCM4), Centre National de Recherches Météorologiques Coupled Global Climate Model, version 5 (CNRM-CM5), and Max Planck Institute Earth System Model, low resolution (MPI-ESM-LR) models show improved skill in the decadal hindcasts, while the Model for Interdisciplinary Research on Climate, version 5 (MIROC5) is skillful in both the decadal and historical experiments. The Beijing Climate Center, Climate System Model, version 1.1 (BCC-CSM1.1), Hadley Centre Coupled Model, version 3 (HadCM3), L'Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, low resolution (IPSL-CM5A-LR), and Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model, version 3 (MRI-CGCM3) models show insignificant or no skill in predicting the Sahelian precipitation. Skillful predictions are produced by models properly describing the SST multidecadal variability and the initialization appears to play an important role in this respect.


2021 ◽  
Vol 14 (5) ◽  
pp. 2977-3006
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model (T266 in the atmosphere and 1/4∘ latitude × 1/4∘ longitude in the ocean). Its development is on the basis of the medium-resolution version BCC-CSM2-MR (T106 in the atmosphere and 1∘ latitude × 1∘ longitude in the ocean) which is the baseline for BCC participation in the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamical core and physical processes. BCC-CSM2-HR is evaluated for historical climate simulations from 1950 to 2014, performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. Observed global warming trends of surface air temperature from 1950 to 2014 are well captured by both BCC-CSM2-MR and BCC-CSM2-HR. Present-day basic atmospheric mean states during the period from 1995 to 2014 are then evaluated at global scale, followed by an assessment on climate variabilities in the tropics including the tropical cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden–Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR represents the global energy balance well and can realistically reproduce the main patterns of atmospheric temperature and wind, precipitation, land surface air temperature, and sea surface temperature (SST). It also improves the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of the double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, almost disappears in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, and the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observations than their counterparts in BCC-CSM2-MR. Some imperfections are, however, noted in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold SST biases and the insufficient number of tropical cyclones in the North Atlantic.


2021 ◽  
Author(s):  
Juliana Valencia ◽  
John F. Mejía

<p>The far Eastern Tropical Pacific and Western Colombia is one of the rainiest places on Earth, and the Choco low-level jet (ChocoJet) is one of the processes that influence the formation of precipitation and convection organization in this region. This study examines projected changes in precipitation using historical and future simulations based on the NCAR Community Climate System Model (CCSM2, 4) and the Community Earth System Model (CESM2), contributing to the Coupled Model Inter-Comparison Project phases 3, 5, and 6 (CMIP3, 5, and 6).  We use detailed process-based diagnostic approaches to evaluate the ability of the models in simulating ChocoJet and precipitation relationships at different temporal scales, from daily to interannual.  Overall, day-to-day positive disturbances in ChocoJet relate to an increase in intense precipitation events.  This relationship is found even in locations far inland in the intermountain valleys of the Colombian Andes. Our results show that relative to CMIP3 and CMIP5 the CMIP6-CESM2 historical simulations show a considerable improvement of precipitation spatio-temporal distribution, with the day-to-day variability and precipitation response resembling more closely that of the observations.  In general, late 21<sup>st</sup> century simulations show a decrease in mean and extreme precipitation consistent the decreased ChocoJet activity.  The down trend in ChocoJet activity appears to be connected to a projected increase in frequency and intensity of the warm phase of ENSO.</p>


2013 ◽  
Vol 30 (3) ◽  
pp. 561-576 ◽  
Author(s):  
Qing Bao ◽  
Pengfei Lin ◽  
Tianjun Zhou ◽  
Yimin Liu ◽  
Yongqiang Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document