Projected changes of Precipitation over the far Eastern Tropical Pacific and Western Colombia

Author(s):  
Juliana Valencia ◽  
John F. Mejía

<p>The far Eastern Tropical Pacific and Western Colombia is one of the rainiest places on Earth, and the Choco low-level jet (ChocoJet) is one of the processes that influence the formation of precipitation and convection organization in this region. This study examines projected changes in precipitation using historical and future simulations based on the NCAR Community Climate System Model (CCSM2, 4) and the Community Earth System Model (CESM2), contributing to the Coupled Model Inter-Comparison Project phases 3, 5, and 6 (CMIP3, 5, and 6).  We use detailed process-based diagnostic approaches to evaluate the ability of the models in simulating ChocoJet and precipitation relationships at different temporal scales, from daily to interannual.  Overall, day-to-day positive disturbances in ChocoJet relate to an increase in intense precipitation events.  This relationship is found even in locations far inland in the intermountain valleys of the Colombian Andes. Our results show that relative to CMIP3 and CMIP5 the CMIP6-CESM2 historical simulations show a considerable improvement of precipitation spatio-temporal distribution, with the day-to-day variability and precipitation response resembling more closely that of the observations.  In general, late 21<sup>st</sup> century simulations show a decrease in mean and extreme precipitation consistent the decreased ChocoJet activity.  The down trend in ChocoJet activity appears to be connected to a projected increase in frequency and intensity of the warm phase of ENSO.</p>

2013 ◽  
Vol 26 (19) ◽  
pp. 7708-7719 ◽  
Author(s):  
Marco Gaetani ◽  
Elsa Mohino

Abstract In this study the capability of eight state-of-the-art ocean–atmosphere coupled models in predicting the monsoonal precipitation in the Sahel on a decadal time scale is assessed. To estimate the importance of the initialization, the predictive skills of two different CMIP5 experiments are compared, a set of 10 decadal hindcasts initialized every 5 years in the period 1961–2009 and the historical simulations in the period 1961–2005. Results indicate that predictive skills are highly model dependent: the Fourth Generation Canadian Coupled Global Climate Model (CanCM4), Centre National de Recherches Météorologiques Coupled Global Climate Model, version 5 (CNRM-CM5), and Max Planck Institute Earth System Model, low resolution (MPI-ESM-LR) models show improved skill in the decadal hindcasts, while the Model for Interdisciplinary Research on Climate, version 5 (MIROC5) is skillful in both the decadal and historical experiments. The Beijing Climate Center, Climate System Model, version 1.1 (BCC-CSM1.1), Hadley Centre Coupled Model, version 3 (HadCM3), L'Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, low resolution (IPSL-CM5A-LR), and Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model, version 3 (MRI-CGCM3) models show insignificant or no skill in predicting the Sahelian precipitation. Skillful predictions are produced by models properly describing the SST multidecadal variability and the initialization appears to play an important role in this respect.


2011 ◽  
Vol 24 (7) ◽  
pp. 2003-2016 ◽  
Author(s):  
Sara A. Rauscher ◽  
Fred Kucharski ◽  
David B. Enfield

Abstract This paper addresses several hypotheses designed to explain why AOGCM simulations of future climate in the third phase of the Coupled Model Intercomparison Project (CMIP3) feature an intensified reduction of precipitation over the Meso-America (MA) region. While the drying is consistent with an amplification of the subtropical high pressure cells and an equatorward contraction of convective regions due to the “upped ante” for convection in a warmer atmosphere, the physical mechanisms behind the intensity and robustness of the MA drying signal have not been fully explored. Regional variations in sea surface temperature (SST) warming may play a role. First, SSTs over the tropical North Atlantic (TNA) do not warm as much as the surrounding ocean. The troposphere senses a TNA that is cooler than the tropical Pacific, potentially exciting a Gill-type response, increasing the strength of the North Atlantic subtropical high. Second, the warm ENSO-like state simulated in the eastern tropical Pacific could decrease precipitation over MA, as warm ENSO events are associated with drying over MA. The authors use the International Centre for Theoretical Physics (ICTP) AGCM to investigate the effects of these regional SST warming variations on the projected drying over MA. First, the change of SSTs [Special Report on Emissions Scenarios (SRES) A1B’s Twentieth-Century Climate in Coupled Model (A1B-20C)] in the ensemble average of the CMIP3 models is applied to determine if the ICTP AGCM can replicate the future drying. Then the effects of 1) removing the reduced warming over the TNA, 2) removing the warm ENSO-event-like pattern in the eastern tropical Pacific, and 3) applying uniform SST warming throughout the tropics are tested. The ICTP AGCM can reproduce the general pattern and amount of precipitation over MA. Simulations in which the CMIP3 A1B-20C ensemble-average SSTs are added to climatological SSTs show drying of more than 20% over the MA region, similar to the CMIP3 ensemble average. Replacing the relatively cooler SSTs over the TNA excites a Gill response consistent with an off-equatorial heating anomaly, showing that the TNA relative cooling is responsible for about 16% (31%) of the drying in late spring (early summer). The warm ENSO-like SST pattern over the eastern Pacific also affects precipitation over the MA region, with changes of 19% and 31% in March–June (MMJ) and June–August (JJA), respectively. This work highlights the importance of understanding even robust signals in the CMIP3 future scenario simulations, and should aid in the design and analysis of future climate change studies over the region.


2021 ◽  
Author(s):  
Namendra Kumar Shahi ◽  
Jan Polcher‬ ◽  
Sophie Bastin ◽  
Romain Pennel ◽  
Lluís Fita

Abstract In this study, we have assessed the added value on the spatio-temporal distribution of the precipitation of convection-permitting simulation (3km) compared to the parent coarser-scale parameterized convection simulation (20km) with the high-resolution observational datasets i.e. SPREAD (5km) and IBERIA01 (10km) over the Iberian Peninsula in all four seasons during 2000-2009. Both simulations are evaluation runs based on ERA-Interim reanalysis and performed with the RegIPSL regional earth system model in the frame of the European Climate Prediction system (EUCP) H2020 project and COordinated Regional climate Downscaling Experiment (CORDEX). We have not found significant improvement in the convection-permitting simulation compared to the parent coarser-scale simulation for the seasonal mean precipitation of the Iberian Peninsula except the spatial variation over mountainous peaks. The kilometer-scale simulation significantly underestimates the observed seasonal mean precipitation over the western parts of the Iberian Peninsula compared to the coarser-scale simulation, which may be attributed to a change of local dynamics in the kilometer-scale simulation with a weakening and southward shifts of the westerly winds and also an enhancement of warm and dry southerly winds over the Iberian Peninsula. However, the added value of kilometer-scale simulation over the driving coarser-scale simulation is obtained for various indices; in the representation of the spatio-temporal distribution of the wet-day precipitation frequency and intensity, and the extreme/heavy precipitation events for each season at both resolutions i.e. downscaled and upscaled. It has also been noted that the spatio-temporal distribution of precipitation for all metrics used varies between the two observational datasets for all seasons.


Author(s):  
Xinyao Rong ◽  
Jian Li ◽  
Haoming Chen ◽  
Jingzhi Su ◽  
Lijuan Hua ◽  
...  

AbstractThis paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences (CAMS) climate system model (CAMS-CSM), which are contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6). The model description, experiment design and model outputs are presented. Three members’ historical experiments are conducted by CAMS-CSM, with two members starting from different initial conditions, and one excluding the stratospheric aerosol to identify the effect of volcanic eruptions. The outputs of the historical experiments are also validated using observational data. It is found that the model can reproduce the climatological mean states and seasonal cycle of the major climate system quantities, including the surface air temperature, precipitation, and the equatorial thermocline. The long-term trend of air temperature and precipitation is also reasonably captured by CAMS-CSM. There are still some biases in the model that need further improvement. This paper can help the users to better understand the performance and the datasets of CAMS-CSM.


2020 ◽  
Vol 37 (10) ◽  
pp. 1057-1066 ◽  
Author(s):  
Yuyang Guo ◽  
Yongqiang Yu ◽  
Pengfei Lin ◽  
Hailong Liu ◽  
Bian He ◽  
...  

Abstract The three-member historical simulations by the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model, version f3-L (CAS FGOALS-f3-L), which is contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6), are described in this study. The details of the CAS FGOALS-f3-L model, experiment settings and output datasets are briefly introduced. The datasets include monthly and daily outputs from the atmospheric, oceanic, land and sea-ice component models of CAS FGOALS-f3-L, and all these data have been published online in the Earth System Grid Federation (ESGF, https://esgf-node.llnl.gov/projects/cmip6/). The three ensembles are initialized from the 600th, 650th and 700th model year of the preindustrial experiment (piControl) and forced by the same historical forcing provided by CMIP6 from 1850 to 2014. The performance of the coupled model is validated in comparison with some recent observed atmospheric and oceanic datasets. It is shown that CAS FGOALS-f3-L is able to reproduce the main features of the modern climate, including the climatology of air surface temperature and precipitation, the long-term changes in global mean surface air temperature, ocean heat content and sea surface steric height, and the horizontal and vertical distribution of temperature in the ocean and atmosphere. Meanwhile, like other state-of-the-art coupled GCMs, there are still some obvious biases in the historical simulations, which are also illustrated. This paper can help users to better understand the advantages and biases of the model and the datasets.


2001 ◽  
Vol 14 (17) ◽  
pp. 3587-3607 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady

2021 ◽  
Author(s):  
Pravat Jena ◽  
sarita azad

Abstract Past versions of vulnerability index have shown ability to detect susceptible region by assessing socio-economic parameters at local scales. However, due to variability of these vulnerability index respect to socio-economic parameters, cann’t be utilized to predict the susceptibility region. The present endeavor aims to develops a new vulnerable index which identify and predict the spatio-temporal imprint of extreme drought and wet events at various scales 1o×1o in India by analyzing monthly observed and Coupled Model Inter-Comparison Phase 5 (CMIP5) rainfall data at spatial scale of time period pertaining to 1901-2100. New vulnerability index is proposed by consolidating the outcomes of Standard Precipitation Index (SPI) at different time scales such as 3- and 12-month and along with weights of individual grids. The weights of individual grid is calculated through the occurrence of extreme drought and wet events in the recent past which is to include a climate change factor in the proposed index. Based on the spatial distribution of high index values, the expected vulnerable regions concerning extreme drought events will be in Northeast, Northeast Central, East Coast, West, Northwest, Northcentral, and some grids in South part of India. Similarly, vulnerable regions concerning extreme wet events are likely to be in the Northeast, West Coast, East Coast, and some grids in the Peninsular region.Further, a conceptual model is presented to quantify the severity of extreme events. The analyses reveal that on the CMIP5 model data, it is obtained that 2024, 2026-27, 2035, 2036-37, 2043-44, 2059-60, 2094 are likely to be the most prominent drought years in all-India monsoon rainfall and their impact will persist for a longer time. Similarly, the most prominent wet events are predicted to be 2076, 2079-80, 2085, 2090, 2092, and 2099.


2015 ◽  
Vol 7 (2) ◽  
pp. 280-295 ◽  
Author(s):  
Rajib Maity ◽  
Ankit Aggarwal ◽  
Kironmala Chanda

This study diagnoses the spatio-temporal variation of three major hydroclimatic variables (temperature, precipitation and evaporation) estimated from four general circulation models participating in the Fifth Phase of the Coupled Model Intercomparision Project (CMIP5). Changes in climate regime are analyzed across India for the historical scenario (1850–2005) and for the RCP8.5 scenario (2006–2100). The study provides a relative assessment of projected changes in climatic pattern over different zones in India, broadly divided as southern, Eastern, Western, Central, North-Eastern and Himalayan regions. Monthly data for both the scenarios were obtained, and all the data were re-gridded to a common resolution. All the models show a stronger warming in the future as compared to the historical period. The North-Eastern, Northern and Himalayan regions are likely to be severely affected. Though inconsistencies have been observed among the models, the majority of them predict an increase in precipitation in future, with a major increment in southern cities. The Himalayan belt is expected to receive heavy rainfall in the summer season, with little change in the winter season. Most of the regions are not expected to experience change in evaporation in pre-monsoonal months, but substantial change is expected in some regions during monsoonal and post-monsoonal months.


Sign in / Sign up

Export Citation Format

Share Document