scholarly journals EBF1 is expressed in pericytes and contributes to pericyte cell commitment

Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.

Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 693-702 ◽  
Author(s):  
Patricia Amé-Thomas ◽  
Hélène Maby-El Hajjami ◽  
Céline Monvoisin ◽  
Rachel Jean ◽  
Delphine Monnier ◽  
...  

Abstract Accumulating evidence indicates that the cellular microenvironment plays a key role in follicular lymphoma (FL) pathogenesis, both within tumor lymph nodes (LNs) and in infiltrated bone marrow where ectopic LN-like reticular cells are integrated within malignant B-cell nodular aggregates. In normal secondary lymphoid organs, specific stromal cell subsets provide a highly specialized microenvironment that supports immune response. In particular, fibroblastic reticular cells (FRCs) mediate immune cell migration, adhesion, and reciprocal interactions. The role of FRCs and their postulated progenitors, that is, bone marrow mesenchymal stem cells (MSCs), in FL remains unexplored. In this study, we investigated the relationships between FRCs and MSCs and their capacity to sustain malignant B-cell growth. Our findings strongly suggest that secondary lymphoid organs contain MSCs able to give rise to adipocytes, chondrocytes, osteoblasts, as well as fully functional B-cell supportive FRCs. In vitro, bone marrow–derived MSCs acquire a complete FRC phenotype in response to a combination of tumor necrosis factor-α and lymphotoxin-α1β2. Moreover, MSCs recruit primary FL cells that, in turn, trigger their differentiation into FRCs, making them able to support malignant B-cell survival. Altogether, these new insights into the cross talk between lymphoma cells and their microenvironment could offer original therapeutic strategies.


2021 ◽  
Vol 21 ◽  
Author(s):  
Xuping Niu ◽  
Qixin Han ◽  
Xiaofang Li ◽  
Juan Li ◽  
Yanmin Liu ◽  
...  

Objective: Psoriasis is a chronic inflammatory skin disease highly depending on angiogenesis. Our prior results showed that the mRNA and protein of Del-1 in dermal mesenchymal stem cells (dMSCs) was up-regulated from psoriasis. Our aim was further to investigate the role of Del-1 from dMSCs in the pathogenesis of psoriasis and confirm the effect of Del-1 on the pathogenesis of psoriasis. Methods: We conducted an immunohistochemistry experiment to further investigate the expression of Del-1in psoriatic lesions. In addition, dMSCs with over-expressed Del-1 via the lentiviral vector of Del-1 were co-cultured with ECs, and the protein expression of integrins (αvβ3, αvβ5 ,and α5β1) of ECs were detected by western blotting. Results: This research showed that Del-1 was significantly increased in lesions of patients with psoriasis (p< .05, 9.96 vs. 2.18), and Del-1 from dMSCs successfully induced up-regulation of integrins α5β1 and αvβ3 (all p < .05). Conclusion: This study demonstrated that Del-1 from dMSCs was involved in the pathogenesis of psoriasis through induced angiogenesis. And Del-1, αvβ3 and α5β1 may be potential new targets for inhibiting angiogenesis in psoriasis.


2019 ◽  
Vol 14 (7) ◽  
pp. 647-661 ◽  
Author(s):  
Sindhuja D Eswaramoorthy ◽  
Nandini Dhiman ◽  
Gayathri Korra ◽  
Carlo M Oranges ◽  
Dirk J Schaefer ◽  
...  

Aim: We investigated the role of induced endothelial cells (iECs) in mesenchymal stem cells (MSCs)/iECs co-culture and assessed their osteogenic ability on silk fibroin nanofiber scaffolds. Methods: The osteogenic differentiation was assessed by the ALP assay, calcium assay and gene expression studies. Results: The osteogenic differentiation of the iECs co-cultures was found to be higher than the MSCs group and proximal to endothelial cells (ECs) co-cultures. Furthermore, the usage of isogenic iECs for co-culture increased the osteogenic and endothelial gene expression. Conclusion: These findings suggest that iECs mimic endothelial cells when co-cultured with MSCs and that one MSCs source can be used to give rise to both MSCs and iECs. The isogenic MSCs/iECs co-culture provides a new option for bone tissue engineering applications.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Devendra K Agrawal ◽  
Izuagie Attairu ◽  
Kokouvi P Djossou ◽  
Divya Pankajakshan

2007 ◽  
Vol 342-343 ◽  
pp. 193-196
Author(s):  
Ho Yun Chung ◽  
Eun Jung Oh ◽  
Jin Hyun Choi ◽  
Byung Chae Cho

Mesenchymal stem cells (MSCs) from bone marrow seem to be the one of best candidates to regenerate injured tissue. However, recent advances in application of MSCs toward large tissue regeneration are faced with lack of vascularity. In this study, endothelial cells differentiated from MSCs were applied for constructing tissue-engineered bone and cartilage. It was found that endothelial cells from MSCs play an important role of providing vasculature.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Shoichiro Kokabu ◽  
Jonathan W. Lowery ◽  
Eijiro Jimi

Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment.


Sign in / Sign up

Export Citation Format

Share Document