scholarly journals High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain

2019 ◽  
Vol 225 (4) ◽  
pp. 1277-1291 ◽  
Author(s):  
Susie Y. Huang ◽  
Qiyuan Tian ◽  
Qiuyun Fan ◽  
Thomas Witzel ◽  
Barbara Wichtmann ◽  
...  
2021 ◽  
Author(s):  
Mariam Andersson ◽  
Marco Pizzolato ◽  
Hans Martin Kjer ◽  
Katrine Forum Skodborg ◽  
Henrik Lundell ◽  
...  

Noninvasive estimation of axon diameter with diffusion MRI holds potential to investigate the dynamic properties of the brain network and pathology of neurodegenerative diseases. Recent methods use powder averaging to account for complex white matter architectures, such as fibre crossing regions, but these have not been validated for real axonal geometries. Here, we present 120-313 μm long segmented axons from X-ray nano-holotomography volumes of a splenium and crossing fibre region of a vervet monkey brain. We show that the axons in the complex crossing fibre region, which contains callosal, association, and corticospinal connections, are larger and exhibit a wider distribution than those of the splenium region. To accurately estimate the axon diameter in these regions, therefore, sensitivity to a wide range of diameters is required. We demonstrate how the q-value, b-value, signal-to-noise ratio and the assumed intra-axonal parallel diffusivity influence the range of measurable diameters with powder average approaches. Furthermore, we show how Gaussian distributed noise results in a wider range of measurable diameter at high b-values than with Rician distributed noise, even at high signal-to-noise ratios of 100. The number of gradient directions is also shown to impose a lower bound on measurable diameter. Our results indicate that axon diameter estimation can be performed with only few b-shells, and that additional shells do not improve the accuracy of the estimate. Through Monte Carlo simulations of diffusion, we show that powder averaging techniques succeed in providing accurate estimates of axon diameter across a range of sequence parameters and diffusion times, even in complex white matter architectures. At sufficiently low b-values, the acquisition becomes sensitive to axonal microdispersion and the intra-axonal parallel diffusivity shows time dependency at both in vivo and ex vivo intrinsic diffusivities.


2012 ◽  
Vol 68 (5) ◽  
pp. 1410-1422 ◽  
Author(s):  
Anthony Romano ◽  
Michael Scheel ◽  
Sebastian Hirsch ◽  
Jürgen Braun ◽  
Ingolf Sack

NeuroImage ◽  
2020 ◽  
Vol 222 ◽  
pp. 117197 ◽  
Author(s):  
Qiuyun Fan ◽  
Aapo Nummenmaa ◽  
Thomas Witzel ◽  
Ned Ohringer ◽  
Qiyuan Tian ◽  
...  

2017 ◽  
Vol 30 (9) ◽  
pp. e3734 ◽  
Author(s):  
Uran Ferizi ◽  
Benoit Scherrer ◽  
Torben Schneider ◽  
Mohammad Alipoor ◽  
Odin Eufracio ◽  
...  

2006 ◽  
Vol 24 (1) ◽  
pp. 231-234 ◽  
Author(s):  
Jayaroop Gullapalli ◽  
Jaroslaw Krejza ◽  
Eric D. Schwartz

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 2050-2050
Author(s):  
Ina Ly ◽  
Barbara Wichtmann ◽  
Susie Yi Huang ◽  
Aapo Nummenmaa ◽  
Ovidiu Andronesi ◽  
...  

2050 Background: The infiltrating nature of gliomas, particularly into the peritumoral area, is a major barrier to improving clinical outcome as microscopic disease remains even after apparent gross total resection. Conventional T1 post-contrast and T2/FLAIR MRI do not capture full tumor extent. A better imaging biomarker is needed to improve differentiation between tumor, peritumoral area and normal brain. Methods: 4 pre-surgical patients with non-enhancing, FLAIR-hyperintense lesions suspicious for glioma underwent ultra-high gradient diffusion MRI on the Connectome MRI scanner, a unique scanner with maximum gradient strength of 300 mT/m enabling mapping of cellular microstructures on a micron-level scale. The FLAIR area was defined as the tumor region of interest (ROI). Radiographically normal appearing brain up to 1 cm around the FLAIR area was defined as the peritumoral ROI. Using a novel 3 compartment diffusion model (Linear Multiscale Model), the volume fraction of water (VFW) was calculated within restricted (intracellular), hindered (extracellular) and free (CSF) spaces. VFW in the tumor, peritumoral ROI, contralateral normal white matter (WM) and cortex were compared. Results: Within the tumor ROI, the median VFW in the restricted compartment was decreased vs. the peritumoral ROI (↓ 34%), WM (↓ 46%) and cortex (↓ 18%) while median VFW in the hindered compartment was increased vs. the peritumoral ROI (↑ 26%), WM (↑ 54%) and cortex (↑ 25%). Within the peritumoral ROI, median VFW in the hindered compartment was increased compared to WM (↑ 23%). 3 patients had available histopathology revealing isocitrate dehydrogenase-mutant gliomas. Conclusions: Using ultra-high gradient diffusion MRI and a novel diffusion model, we detected distinct diffusion patterns in the tumor and peritumoral area not seen on conventional MRI. Lower VFW in the restricted compartment within the tumor may reflect decreased intracellular water mobility due to enlarged nuclei. Higher VFW in the hindered compartment in the tumor and peritumoral area may reflect higher degree of tissue permeability and edema. MRI-pathology and larger cohort validation studies are underway to elucidate microenvironment changes in response to treatment.


2007 ◽  
Vol 26 (11) ◽  
pp. 1547-1554 ◽  
Author(s):  
Lisa Jonasson ◽  
Xavier Bresson ◽  
Jean-Philippe Thiran ◽  
Van J. Wedeen ◽  
Patric Hagmann

PLoS ONE ◽  
2008 ◽  
Vol 3 (11) ◽  
pp. e3631 ◽  
Author(s):  
René C. W. Mandl ◽  
Hugo G. Schnack ◽  
Marcel P. Zwiers ◽  
Arjen van der Schaaf ◽  
René S. Kahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document