scholarly journals Matter infall in collapsing molecular cloud cores with an axial magnetic field

2011 ◽  
Vol 334 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Mohsen Nejad-Asghar
2018 ◽  
Vol 14 (A30) ◽  
pp. 100-100
Author(s):  
Shu-ichiro Inutsuka

AbstractRecent observations have emphasized the importance of the formation and evolution of magnetized filamentary molecular clouds in the process of star formation. Theoretical and observational investigations have provided convincing evidence for the formation of molecular cloud cores by the gravitational fragmentation of filamentary molecular clouds. In this review we summarize our current understanding of various processes that are required in describing the filamentary molecular clouds. Especially we can explain a robust formation mechanism of filamentary molecular clouds in a shock compressed layer, which is in analogy to the making of “Sushi.” We also discuss the origin of the mass function of cores.


1990 ◽  
Vol 140 ◽  
pp. 291-292
Author(s):  
Z.P. Zhou ◽  
X.W. Zheng

Strong circular polarization of OH masers at 1665 and 1667 MHz lines has been observed towards the molecular cloud cores associated with HII regions. Magnetic field strengths of a few mG are derived from the Zeeman splitting of OH lines. For instance, a magnetic field of about 4 mG in the masing region of W3(OH) has been estimated by OH-line Zeeman splitting (Davies, 1974). VLBI observations show that the OH maser spots project onto or very close to the surface of associated compact HII regions (Reid et al., 1986). The observational evidence demonstrates that the scales of OH maser components surrounding a compact HII region (R ~ 1016 cm) are about 1014 cm in diameter with an amplification pathlength of ~1015 cm. Hence the magnetic fields determined by the Zeeman splitting of OH maser lines appear partly very close to the associated HII region. Elitzur (1979) has theoretically obtained similar results as above.


Author(s):  
J. Wolowski ◽  
J. Badziak ◽  
P. Parys ◽  
E. Woryna ◽  
J. Krasa ◽  
...  

1999 ◽  
Vol 515 (1) ◽  
pp. 275-285 ◽  
Author(s):  
R. M. Crutcher ◽  
D. A. Roberts ◽  
T. H. Troland ◽  
W. M. Goss

Author(s):  
Le Sun ◽  
Zhejun Luo ◽  
Jun Hang ◽  
Shichuan Ding ◽  
Wei Wang

2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


1991 ◽  
Vol 147 ◽  
pp. 353-356
Author(s):  
N. Ohashi ◽  
R. Kawabe ◽  
M. Hayashi ◽  
M. Ishiguro

The CS (J = 2 — 1) line and 98 GHz continuum emission have been observed for 11 protostellar IRAS sources in the Taurus molecular cloud with resolutions of 2.6″−8.8″ (360 AU—1200 AU) using the Nobeyama Millimeter Array (NMA). The CS emission is detected only toward embedded sources, while the continuum emission from dust grains is detected only toward visible T Tauri stars except for one embedded source, L1551-IRS5. This suggests that the dust grains around the embedded sources do not centrally concentrate enough to be detected with our sensitivity (∼4 m Jy r.m.s), while dust grains in disks around the T Tauri stars have enough total mass to be detected with the NMA. The molecular cloud cores around the embedded sources are moderately extended and dense enough to be detected in CS, while gas disks around the T Tauri are not detected because the radius of such gas disks may be smaller than 70 (50 K/Tex) AU. These results imply that the total amount of matter within the NMA beam size must increase when the central objects evolve into T Tauri stars from embedded sources, suggesting that the compact and highly dense disks around T Tauri stars are formed by the dynamical mass accretion during the embedded protostar phase.


Sign in / Sign up

Export Citation Format

Share Document