dust grains
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 143)

H-INDEX

59
(FIVE YEARS 8)

Author(s):  
Rupali Paul ◽  
Gunjan Sharma ◽  
Kishor Deka ◽  
Sayan Adhikari ◽  
Rakesh Moulick ◽  
...  

Abstract The role of hot electrons in the charging of dust grains is investigated in a two-temperature hydrogen plasma. A variety of dust particles are introduced into the system and secondary electron emission (SEE) from each of the dust grains has been reported. A cylindrical Langmuir probe is used for determining the plasma parameters and a Faraday cup is connected to an electrometer in order to measure the dust current. The electrometer readings confirm the electron emission from the dust and SEE is observed from the tungsten dust in a low-pressure experimental plasma device for the first time.


2021 ◽  
Vol 28 (12) ◽  
pp. 122503
Author(s):  
Zhuang Liu ◽  
Rui Ding ◽  
Xueqiao Xu ◽  
Nami Li ◽  
Guozhong Deng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 923 (2) ◽  
pp. 270
Author(s):  
Hauyu Baobab Liu ◽  
An-Li Tsai ◽  
Wen Ping Chen ◽  
Jin Zhong Liu ◽  
Xuan Zhang ◽  
...  

Abstract Previous observations have shown that the ≲10 au, ≳400 K hot inner disk of the archetypal accretion outburst young stellar object, FU Ori, is dominated by viscous heating. To constrain dust properties in this region, we have performed radio observations toward this disk using the Karl G. Jansky Very Large Array in 2020 June–July, September, and November. We also performed complementary optical photometric monitoring observations. We found that the dust thermal emission from the hot inner disk mid-plane of FU Ori has been approximately stationary and the maximum dust grain size is ≳1.6 mm in this region. If the hot inner disk of FU Ori, which is inward of the 150–170 K water snowline, is turbulent (e.g., corresponding to a Sunyaev & Shakura viscous α t ≳ 0.1), or if the actual maximum grain size is still larger than the lower limit we presently constrain, then as suggested by the recent analytical calculations and the laboratory measurements, water-ice-free dust grains may be stickier than water-ice-coated dust grains in protoplanetary disks. Additionally, we find that the free–free emission and the Johnson B- and V-band magnitudes of these binary stars were brightening in 2016–2020. The optical and radio variability might be related to the dynamically evolving protostellar- or disk-accretion activities. Our results highlight that the hot inner disks of outbursting objects are important laboratories for testing models of dust grain growth. Given the active nature of such systems, to robustly diagnose the maximum dust grain sizes, it is important to carry out coordinated multiwavelength radio observations.


2021 ◽  
Vol 923 (1) ◽  
pp. L4
Author(s):  
Z. W. Hu ◽  
R. P. Winarski

Abstract Planets are known to grow out of a star-encircling disk of the gas and dust inherited from an interstellar cloud; their formation is thought to begin with coagulation of submicron dust grains into aggregates, the first foundational stage of planet formation. However, with nanoscale and submicron solids unobservable directly in the interstellar medium (ISM) and protoplanetary disks, how dust grains grow is unclear, as are the morphology and structure of interstellar grains and the whereabouts and form of “missing iron.” Here we show an elementary composite binary in 3D sub-10 nm detail—and the alignments of its two subunits and nanoinclusions and a population of elongated composite grains locked in a primitive cosmic dust particle—noninvasively uncovered with phase-contrast X-ray nanotomography. The binary comprises a pair of oblate, quasi-spheroidal grains whose alignment and shape meet the astrophysical constraints on polarizing interstellar grains. Each member of the pair contains a high-density core of octahedral nanocrystals whose twin relationship is consistent with the magnetite’s diagnostic property at low temperatures, with a mantle exhibiting nanoscale heterogeneities, rounded edges, and pitted surfaces. This elongated binary evidently formed from an axially aligned collision of the two similar composite grains whose core–mantle structure and density gradients are consistent with interstellar processes and astronomical evidence for differential depletion. Our findings suggest that the ISM is threaded with dust grains containing preferentially oriented iron-rich magnetic nanocrystals that hold answers to astronomical problems from dust evolution, grain alignment, and the structure of magnetic fields to planetesimal growth.


Author(s):  
Tim Jacobus Adrianus Staps ◽  
Tim Jacobus Maria Donders ◽  
Bart Platier ◽  
J Beckers

Abstract A dust grain immersed in a low-pressure gas discharge obtains a permanent negative surface charge due to the high mobility of electrons compared to that of ions. This charge essentially governs all fundamental processes in dusty and complex plasmas involving dust grains, neutrals, (an)ions and electrons and—consequently—virtually all industrial applications of these types of plasmas are affected and steered by it. In this work, we have measured the surface charge by application of laser-induced electron detachment from nanosized dust grains in concert with microwave cavity resonance spectroscopy and laser light extinction. The main result is that the electron release is governed by photodetachment rather than by thermionic emission, and that recharging of the dust grains occurs on timescales that are well in agreement with the orbital-motion-limited (OML) theory. The total surface charge density residing on the dust grains inside the laser volume follows from the saturation of the photodetachment signal, which was used in combination with dust density values derived from extinction measurements to estimate the mean dust charge. The negative dust charge on the 140 nm (average) diameter dust grains in this work is obtained to be in the range of 273 − 2519 elementary charges, of which the lower bound matches well with analytical predictions using the orbital-motion-limited (OML) theory.


2021 ◽  
Vol 921 (2) ◽  
pp. 169
Author(s):  
Kazuhiro D. Kanagawa ◽  
Takayuki Muto ◽  
Hidekazu Tanaka

Abstract Relatively large dust grains (referred to as pebbles) accumulate at the outer edge of the gap induced by a planet in a protoplanetary disk, and a ring structure with a high dust-to-gas ratio can be formed. Such a ring has been thought to be located immediately outside the planetary orbit. We examined the evolution of the dust ring formed by a migrating planet, by performing two-fluid (gas and dust) hydrodynamic simulations. We found that the initial dust ring does not follow the migrating planet and remains at the initial location of the planet in cases with a low viscosity of α ∼ 10−4. The initial ring is gradually deformed by viscous diffusion, and a new ring is formed in the vicinity of the migrating planet, which develops from the trapping of the dust grains leaking from the initial ring. During this phase, two rings coexist outside the planetary orbit. This phase can continue over ∼1 Myr for a planet migrating from 100 au. After the initial ring disappears, only the later ring remains. This change in the ring morphology can provide clues as to when and where the planet was formed, and is the footprint of the planet. We also carried out simulations with a planet growing in mass. These simulations show more complex asymmetric structures in the dust rings. The observed asymmetric structures in the protoplanetary disks may be related to a migrating and growing planet.


Author(s):  
S. Cazaux ◽  
H. Carrascosa ◽  
G. M. Muñoz Caro ◽  
P. Caselli ◽  
A. Fuente ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tim Jacobus Adrianus Staps ◽  
Marvin Igor van de Ketterij ◽  
Bart Platier ◽  
Job Beckers

AbstractDusty plasmas comprise a complex mixture of neutrals, electrons, ions and dust grains, which are found throughout the universe and in many technologies. The complexity resides in the chemical and charging processes involving dust grains and plasma species, both of which impact the collective plasma behavior. For decades, the orbital-motion-limited theory is used to describe the plasma charging of dust grains, in which the electron current is considered collisionless. Here we show that the electron (momentum transfer) collision frequency exceeds the electron plasma frequency in a powder-forming plasma. This indicates that the electron current is no longer collisionless, and the orbital-motion-limited theory may need corrections to account for elastic electron collisions. This implication is especially relevant for higher gas pressure, lower plasma density, and larger dust grain size and density.


2021 ◽  
Author(s):  
Kyoko K. Tanaka ◽  
Ingrid Mann ◽  
Yuki Kimura

Abstract. Observations of polar mesospheric clouds have revealed the presence of solid ice particles in the upper mesosphere at high latitudes; however, their formation mechanism remains uncertain. In this study, we investigated the formation process of ice particles through nucleation from small amounts of water vapor at low temperatures. Previous studies that used classical nucleation theory have shown that amorphous solid water particles can nucleate homogeneously at conditions that are present in the mesosphere. However, the rate predictions for water in classical nucleation theory disagree with experimental measurements by several orders of magnitude. We adopted a semi-phenomenological model for the nucleation process, which corrects the evaluation of the molecular cluster formation energy using the second virial coefficient, which agrees with both experiments and molecular dynamics simulations. To calculate the nucleation process, we applied atmospheric conditions for the temperature, pressure, numerical density of dust grains, and cooling rate. The results indicate that homogeneous water nucleation is extremely unlikely to occur in the mesosphere, while heterogeneous nucleation occurs effectively. Dust grains generated by meteor ablation can serve as nuclei for heterogeneous nucleation. We also showed that the ice can form directly in a crystalline state, rather than an amorphous state.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Uday Narayan Ghosh ◽  
Prasanta Chatterjee ◽  
Barjinder Kaur

Abstract A theoretical investigation by an all-inclusive adaptation of the PLK strategy is carried out in order to study the inward and outward interaction between two cylindrical and spherical dust acoustic solitary waves (DASWs) in an unmagnetized dusty plasma consisting of nonthermal distributed ions, negatively and positively charged dust grains along with electrons featuring Boltzmann’s distribution. The interactions and collisions between two cylindrical and spherical geometries at different time scales are studied. Also the combined effects of the nonthermality of ions, ion to electron temperature ratio as well as mass ratio of positive to negative dust grains have been studied in detail on the phase shifts raised due to collision. It has been seen that the properties of the cooperation of DASWs in cylindrical and spherical shaped are distinct.


Sign in / Sign up

Export Citation Format

Share Document