Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs)

Author(s):  
Moyassar Basil Hadi Al-Shaibani
2017 ◽  
Vol 7 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Ioannis Azoidis ◽  
Joel Metcalfe ◽  
James Reynolds ◽  
Shirley Keeton ◽  
Sema S. Hakki ◽  
...  

Abstract


2019 ◽  
Author(s):  
Tiffany Miller

<p>Bone marrow derived stem cells express biomarkers capable of facilitating adhesion to the cell culturing microenvironment, thereby, influencing their proliferation, migration, and differentiation. In particular, biological biomarkers of mesenchymal stem cells include, but are not limited to, CD14-, CD19-, CD34-, CD45-, CD29, CD44, CD73+, CD90+, CD105+, CD106, CD166, Stro-1, and HLADR. The relationship between the stem cell biology and the materials and methods forming a cell culturing microenvironment serves as a critical aspect in the successful adhesion and growth within two-dimensional cell culture microenvironments such as polystyrene, laminin, fibronectin, or poly-L-lysine and within three-dimensional cell culture microenvironments such as hydrogel, ceramic, collagen, polymer based nanofibers, agitation, forced floating, and hang drop systems. Further, electrical stimulation of the stem cells may be implemented during the cell culturing process to measure stem cell growth and to determine stem cell viability. In addition, electrical stimulation of implanted stem cells may facilitate tracking by measuring stem cell migration distance and travel area. Although many biochemical and inflammatory biomarkers are expressed based on severity in stroke including, but not limited to, Interluken-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glutamate (Glu), current methodologies of stem cell directing lack localization and biological effector specificity. Biological effector bound magnetic particle stem cells may serve as a potential treatment method in ischemic stroke. In particular, a stem cell biomarker may be configured to communicate with inflammatory biomarkers, thus, more efficiently delivering the stem cells to site specific areas having the most severely affected <i>in-vivo</i> biochemical microenvironments.</p>


2021 ◽  
Vol 33 (1) ◽  
pp. 78-87
Author(s):  
Takeshi Shimoto ◽  
Chihiro Teshima ◽  
Toshiki Watanabe ◽  
Xiu-Ying Zhang ◽  
Atsushi Ishikawa ◽  
...  

This research group has established a technology for producing a three-dimensional cell constructed using only the cell itself. This technology uses a property in which the spheroids fuse with each other. We developed a system that automates the spheroid production process to obtain reproducible spheroids and suppress variation factors that occur from human operation. However, it has become clear that the dispersion occurs in the diameter depending on the number of cells of the spheroid even if the cells are handled in the same manner. The purpose of this research is to examine an appropriate pipetting motion in accordance with the number of cells of the spheroid to be produced. Rabbit mesenchymal stem cells (rMSCs) are used as the objects. The number of cells was set to 2×104, 3×104, and 4×104 cells/well, and the passage number as 7. The appearance of spheroids cultured using the motion programmed in accordance with each number of cells was observed every 24 hours for 5 days after seeding. The results of the analysis indicate that the optimum motion in each number of cells has been successfully specified, and reproducible spheroids have been successfully produced.


2019 ◽  
Author(s):  
Tiffany Miller

<p>Bone marrow derived stem cells express biomarkers capable of facilitating adhesion to the cell culturing microenvironment, thereby, influencing their proliferation, migration, and differentiation. In particular, biological biomarkers of mesenchymal stem cells include, but are not limited to, CD14-, CD19-, CD34-, CD45-, CD29, CD44, CD73+, CD90+, CD105+, CD106, CD166, Stro-1, and HLADR. The relationship between the stem cell biology and the materials and methods forming a cell culturing microenvironment serves as a critical aspect in the successful adhesion and growth within two-dimensional cell culture microenvironments such as polystyrene, laminin, fibronectin, or poly-L-lysine and within three-dimensional cell culture microenvironments such as hydrogel, ceramic, collagen, polymer based nanofibers, agitation, forced floating, and hang drop systems. Further, electrical stimulation of the stem cells may be implemented during the cell culturing process to measure stem cell growth and to determine stem cell viability. In addition, electrical stimulation of implanted stem cells may facilitate tracking by measuring stem cell migration distance and travel area. Although many biochemical and inflammatory biomarkers are expressed based on severity in stroke including, but not limited to, Interluken-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glutamate (Glu), current methodologies of stem cell directing lack localization and biological effector specificity. Biological effector bound magnetic particle stem cells may serve as a potential treatment method in ischemic stroke. In particular, a stem cell biomarker may be configured to communicate with inflammatory biomarkers, thus, more efficiently delivering the stem cells to site specific areas having the most severely affected <i>in-vivo</i> biochemical microenvironments.</p>


2018 ◽  
Vol 19 (4) ◽  
pp. 1091-1099 ◽  
Author(s):  
Ciqing Tong ◽  
Tingxian Liu ◽  
Victorio Saez Talens ◽  
Willem E. M. Noteborn ◽  
Thomas H. Sharp ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
Author(s):  
Jörg Handschel ◽  
Christian Naujoks ◽  
Rita Depprich ◽  
Lydia Lammers ◽  
Norbert Kübler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document