Numerical Method to Solve the Cauchy Problem with Previous History

2017 ◽  
Vol 53 (1) ◽  
pp. 34-56 ◽  
Author(s):  
V. A. Prusov ◽  
A. Yu. Doroshenko
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yao Sun ◽  
Deyue Zhang

We are concerned with the Cauchy problem connected with the Helmholtz equation. We propose a numerical method, which is based on the Helmholtz representation, for obtaining an approximate solution to the problem, and then we analyze the convergence and stability with a suitable choice of regularization method. Numerical experiments are also presented to show the effectiveness of our method.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


Sign in / Sign up

Export Citation Format

Share Document