scholarly journals An Integral Equations Method for the Cauchy Problem Connected with the Helmholtz Equation

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yao Sun ◽  
Deyue Zhang

We are concerned with the Cauchy problem connected with the Helmholtz equation. We propose a numerical method, which is based on the Helmholtz representation, for obtaining an approximate solution to the problem, and then we analyze the convergence and stability with a suitable choice of regularization method. Numerical experiments are also presented to show the effectiveness of our method.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
H. Bin Jebreen

A novel and efficient numerical method is developed based on interpolating scaling functions to solve 2D Fredholm integral equations (FIE). Using the operational matrix of integral for interpolating scaling functions, FIE reduces to a set of algebraic equations that one can obtain an approximate solution by solving this system. The convergence analysis is investigated, and some numerical experiments confirm the accuracy and validity of the method. To show the ability of the proposed method, we compare it with others.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Hao Cheng ◽  
Ping Zhu ◽  
Jie Gao

A regularization method for solving the Cauchy problem of the Helmholtz equation is proposed. Thea priorianda posteriorirules for choosing regularization parameters with corresponding error estimates between the exact solution and its approximation are also given. The numerical example shows the effectiveness of this method.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


Author(s):  
Pauline Achieng ◽  
Fredrik Berntsson ◽  
Jennifer Chepkorir ◽  
Vladimir Kozlov

Abstract The Cauchy problem for general elliptic equations of second order is considered. In a previous paper (Berntsson et al. in Inverse Probl Sci Eng 26(7):1062–1078, 2018), it was suggested that the alternating iterative algorithm suggested by Kozlov and Maz’ya can be convergent, even for large wavenumbers $$k^2$$ k 2 , in the Helmholtz equation, if the Neumann boundary conditions are replaced by Robin conditions. In this paper, we provide a proof that shows that the Dirichlet–Robin alternating algorithm is indeed convergent for general elliptic operators provided that the parameters in the Robin conditions are chosen appropriately. We also give numerical experiments intended to investigate the precise behaviour of the algorithm for different values of $$k^2$$ k 2 in the Helmholtz equation. In particular, we show how the speed of the convergence depends on the choice of Robin parameters.


Sign in / Sign up

Export Citation Format

Share Document