A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs

2019 ◽  
Vol 75 (2) ◽  
pp. 321-360
Author(s):  
Enrico Bettiol ◽  
Lucas Létocart ◽  
Francesco Rinaldi ◽  
Emiliano Traversi
Diabetes ◽  
1984 ◽  
Vol 33 (7) ◽  
pp. 700-703 ◽  
Author(s):  
J. B. Buse ◽  
A. Ben-Nun ◽  
K. A. Klein ◽  
G. S. Eisenbarth ◽  
J. G. Seidman ◽  
...  

Author(s):  
Mustafa S. Abd ◽  
Suhad Faisal Behadili

Psychological research centers help indirectly contact professionals from the fields of human life, job environment, family life, and psychological infrastructure for psychiatric patients. This research aims to detect job apathy patterns from the behavior of employee groups in the University of Baghdad and the Iraqi Ministry of Higher Education and Scientific Research. This investigation presents an approach using data mining techniques to acquire new knowledge and differs from statistical studies in terms of supporting the researchers’ evolving needs. These techniques manipulate redundant or irrelevant attributes to discover interesting patterns. The principal issue identifies several important and affective questions taken from a questionnaire, and the psychiatric researchers recommend these questions. Useless questions are pruned using the attribute selection method. Moreover, pieces of information gained through these questions are measured according to a specific class and ranked accordingly. Association and a priori algorithms are used to detect the most influential and interrelated questions in the questionnaire. Consequently, the decisive parameters that may lead to job apathy are determined.


1992 ◽  
Vol 288 (3) ◽  
pp. 919-924 ◽  
Author(s):  
I Linhartová ◽  
P Dráber ◽  
E Dráberová ◽  
V Viklický

Individual beta-tubulin isoforms in developing mouse brain were characterized using immunoblotting, after preceding high-resolution isoelectric focusing, with monoclonal antibodies against different structural regions of beta-tubulin. Some of the antibodies reacted with a limited number of tubulin isoforms in all stages of brain development and in HeLa cells. The epitope for the TU-14 antibody was located in the isotype-defining domain and was present on the beta-tubulin isotypes of classes I, II and IV, but absent on the neuron-specific class-III isotype. The data suggest that non-class-III beta-tubulins in mouse brain are substrates for developmentally regulated post-translational modifications and that beta-tubulins of non-neuronal cells are also post-translationally modified.


2021 ◽  
Vol 11 (14) ◽  
pp. 6368
Author(s):  
Fátima A. Saiz ◽  
Garazi Alfaro ◽  
Iñigo Barandiaran ◽  
Manuel Graña

This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation.


2021 ◽  
Vol 413 (8) ◽  
pp. 2091-2102
Author(s):  
Michael Witting ◽  
Ulrike Schmidt ◽  
Hans-Joachim Knölker

AbstractLipid identification is one of the current bottlenecks in lipidomics and lipid profiling, especially for novel lipid classes, and requires multidimensional data for correct annotation. We used the combination of chromatographic and ion mobility separation together with data-independent acquisition (DIA) of tandem mass spectrometric data for the analysis of lipids in the biomedical model organism Caenorhabditis elegans. C. elegans reacts to harsh environmental conditions by interrupting its normal life cycle and entering an alternative developmental stage called dauer stage. Dauer larvae show distinct changes in metabolism and morphology to survive unfavorable environmental conditions and are able to survive for a long time without feeding. Only at this developmental stage, dauer larvae produce a specific class of glycolipids called maradolipids. We performed an analysis of maradolipids using ultrahigh performance liquid chromatography-ion mobility spectrometry-quadrupole-time of flight-mass spectrometry (UHPLC-IM-Q-ToFMS) using drift tube ion mobility to showcase how the integration of retention times, collisional cross sections, and DIA fragmentation data can be used for lipid identification. The obtained results show that combination of UHPLC and IM separation together with DIA represents a valuable tool for initial lipid identification. Using this analytical tool, a total of 45 marado- and lysomaradolipids have been putatively identified and 10 confirmed by authentic standards directly from C. elegans dauer larvae lipid extracts without the further need for further purification of glycolipids. Furthermore, we putatively identified two isomers of a lysomaradolipid not known so far. Graphical abstract


Author(s):  
E. Alper Yıldırım

AbstractWe study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.


Sign in / Sign up

Export Citation Format

Share Document