Angiotensin II Type 1 Receptor Antagonist Suppress Angiogenesis and Growth of Gastric Cancer Xenografts

2007 ◽  
Vol 53 (5) ◽  
pp. 1206-1210 ◽  
Author(s):  
Wei Huang ◽  
Yun-Lin Wu ◽  
Jie Zhong ◽  
Feng-Xiang Jiang ◽  
Xiang-long Tian ◽  
...  
Human Cell ◽  
2007 ◽  
Vol 20 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Michio KOSUGI ◽  
Akira MIYAJIMA ◽  
Eiji KIKUCHI ◽  
Takeo KOSAKA ◽  
Yutaka HORIGUCHI ◽  
...  

2002 ◽  
Vol 17 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Makoto Itoh ◽  
Y. Takeishi ◽  
Shigekazu Nakada ◽  
Takuya Miyamoto ◽  
Yuichi Tsunoda ◽  
...  

2002 ◽  
Vol 25 (7) ◽  
pp. 857-860 ◽  
Author(s):  
Tomoko Tokioka-Akagi ◽  
Akira Fujimori ◽  
Masayuki Shibasaki ◽  
Yasuko Matsuda-Satoh ◽  
Osamu Inagaki ◽  
...  

2020 ◽  
Vol 318 (3) ◽  
pp. F683-F688 ◽  
Author(s):  
Malou Friederich-Persson ◽  
Patrik Persson

Exaggerated activation of the renin-angiotensin-aldosterone system (RAAS) is a key feature in diseases such as hypertension, diabetes, and chronic kidney disease. Recently, an intracellular RAAS was demonstrated with angiotensin II (ANG II) type 1 (AT1) and type 2 (AT2) receptors expressed in nuclei and mitochondria. Diabetes is associated with both mitochondrial dysfunction and increased intracellular ANG II concentration in the kidney cortex. The present study investigated the role of ANG II signaling in kidney cortex mitochondria isolated from control and streptozotocin-induced diabetic rats. Mitochondrial oxygen consumption was evaluated after addition of ANG II alone or after preincubation with candesartan (AT1 receptor antagonist), PD-123319 (AT2 receptor antagonist), or the two in combination. ANG II binds to only mitochondrial AT2 receptors in control rats and both AT1 receptors and AT2 receptors in diabetic rats. ANG II decreased oxygen consumption in mitochondria from both control and diabetic rats. ANG II response was reversed to increased oxygen consumption by the nitric oxide synthase inhibitor N-nitro-l-arginine methyl ester. AT1 receptor inhibition did not affect the response to ANG II, whereas AT2 receptor inhibition abolished the response in mitochondria from control rats and reversed the response to increased oxygen consumption through superoxide-induced mitochondrial uncoupling in mitochondria from diabetic rats. ANG II decrease mitochondrial respiration via AT2 receptor-mediated nitric oxide release in both control and diabetic rats. AT1 receptors do not regulate mitochondria function in control rats, whereas ANG II via AT1 receptors increase mitochondria leak respiration in diabetic animals.


Hypertension ◽  
1999 ◽  
Vol 33 (4) ◽  
pp. 975-980 ◽  
Author(s):  
Kozo Fujii ◽  
Seiji Umemoto ◽  
Akihisa Fujii ◽  
Takahito Yonezawa ◽  
Toshihiro Sakumura ◽  
...  

2009 ◽  
Vol 111 (3) ◽  
pp. 227-234 ◽  
Author(s):  
Mohiuddin Ahmed Bhuiyan ◽  
Murad Hossain ◽  
Shin-ichiro Miura ◽  
Takashi Nakamura ◽  
Masanobu Ozaki ◽  
...  

1998 ◽  
Vol 4 (3) ◽  
pp. 68
Author(s):  
Reiko Doi ◽  
Tohru Masuyama ◽  
Kazuhiro Yamamoto ◽  
Keiko Ono ◽  
Hiroya Kondo ◽  
...  

2003 ◽  
Vol 81 (9) ◽  
pp. 915-919 ◽  
Author(s):  
My-Lan Pham-Dang ◽  
Robert Clement ◽  
Isabelle Mercier ◽  
Angelino Calderone

Hormonal replacement therapy (HRT) has failed to provide a cardioprotective action in postmenopausal women, and thus alternative pharmacological approaches are required. The present study examined the therapeutic potential of the partial estrogen receptor agonist tamoxifen and the angiotensin II type-1 receptor antagonist irbesartan on the hemodynamic profile of ovariectomized (OVX) female Sprague–Dawley rats (9–11 weeks). Three weeks following ovariectomy, uterine atrophy was evident and body weight was increased as compared with sham-operated animals. Left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and mean arterial pressure (MAP) were significantly increased in the OVX rats as compared with sham rats. One week following ovariectomy, rats were treated with either tamoxifen (10 mg kg–1 day–1) or irbesartan (40 mg kg–1 day–1) for a period of 2 weeks. The administration of tamoxifen to OVX rats partially reversed uterine atrophy and prevented body weight gain, albeit body weight remained significantly lower than in sham-operated animals. LVSP and LVEDP were normalized in the tamoxifen-treated OVX rats, whereas MAP remained elevated. Irbesartan partially reduced the body weight gain of the OVX rats and did not influence uterine atrophy. LVSP and MAP were normalized in irbesartan-treated OVX rats, whereas LVEDP remained elevated. These data demonstrate that irbesartan rather than tamoxifen was efficacious in normalizing MAP in the OVX rats without a secondary effect on the uterus.Key words: ovariectomy, hemodynamics, tamoxifen, AT1 receptor antagonists.


Sign in / Sign up

Export Citation Format

Share Document