Stress–Strain State Near a Hole in a Shear-Compliant Composite Cylindrical Shell with Elliptical Cross-Section

2018 ◽  
Vol 54 (5) ◽  
pp. 559-567 ◽  
Author(s):  
E. A. Storozhuk ◽  
I. S. Chernyshenko ◽  
A. V. Yatsura
Author(s):  
Sergey B. Kosytsyn ◽  
Vladimir Y. Akulich

The work is aimed at research of the stress-strain state of a cylindrical shell of a tunnel using the non-linear static analysis and construction stage analysis. Research is carried out on the example of determining the stress-strain state of the tubing (shells) of the main line tunnel, constructed using a tunnel powered complex (slurry shield). Based on obtained results, a comparative analysis of the computational models with the corresponding conclusions is presented.


2018 ◽  
Vol 284 ◽  
pp. 71-76
Author(s):  
P.V. Solovyev ◽  
A.I. Gomzin ◽  
L.A. Ishbulatov ◽  
S.N. Galyshev ◽  
F.F. Musin

In this article the results of stress-strain state investigation for composite airplane wing stringer with different layers stacking structures are presented. As an object of research, a stringer made of composite carbon with V-shaped cross-section is considered. Due to the stress-strain state analysis of various stringer structures, the most effective structure for stringer layers stacking is selected, both in the view of providing the most rigidity and optimal perception by the stringer the field of external loads, which are most typical for the conditions of its operation.


Author(s):  
O. Hrevtsev ◽  
N. Selivanova ◽  
P. Popovych ◽  
L. Poberezhny ◽  
O. Shevchuk ◽  
...  

Purpose: To ensure an adequate level of accuracy, it is rational to study the ponderomotor forces of the ring, which drive a hollow disk of variable thickness, hung on the ring. Design/methodology/approach: The solution of the motion problem of a hollow disk of variable thickness suspended on a force ring of rectangular cross section is based on the method of solving the equations of the theory of thermoelasticity. The stress-strain state, as well as the motion of the specified body of rotation, the disk, in studies in a cylindrical coordinate system, under the action of ponderomotor forces. Findings: The motion equation of a hollow disk hung on a force ring-torus is made, exact solutions of the motion equations of a ring in the torus form of rectangular cross section are found. New component expressions of ponderomotor forces, which appear from the action of the ring's own electromagnetic field and cause the motion of a hollow disk, have been found on the basis of Maxwell's equations. It is proved that at high speeds and low natural accelerations the stress - strain state of the disk material does not cause the destruction of the structure. Research limitations/implications: Calculations of ponderomorphic forces are valid for the ring, which drives a hollow disk of variable thickness, hung on the ring. Practical implications: It is proved that at high velocities and small natural accelerations the stress-strain state of the disk medium does not cause structural damage. It is determined that the rotation in the direction of movement at an angle of 90 degrees changes only the direction of the acceleration vector without increasing its value. Originality/value: The dependences between own time and coordinate time are formulated. It is proved that a small change in the natural time for the studied disk can significantly change the coordinate time, and the pulsed electromagnetic field provides the ability to cover infinitely large distances over finite periods of time.


Sign in / Sign up

Export Citation Format

Share Document