scholarly journals MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway

Author(s):  
Chong Li ◽  
Shiyu Feng ◽  
Ling Chen

Abstract Long non-coding RNAs (lncRNAs) have been widely reported to regulate the development and chemoresistance of a variety of tumors. Temozolomide (TMZ) is a first-line chemotherapy for treatment of glioma. However, the effect and the regulatory mechanism of lncRNA MSC-AS1 (MSC-AS1) in TMZ-resistant glioma remain unrevealed. Levels of MSC-AS1, microRNA-373-3p (miR-373-3p), and cytoplasmic polyadenylation element binding protein 4 (CPEB4) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). All protein expression was detected by western blot. Cell viability and the half maximal inhibitory concentration (IC50) value of TMZ was assessed by cell counting kit-8 (CCK-8) assay. Cell cloning ability and apoptosis were examined by colony formation and flow cytometry assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the correlation between miR-373-3p and MSC-AS1 or CPEB4. The xenograft models were established to determine the effect of MSC-AS1 in vivo. MSC-AS1 was up-regulated in TMZ-resistant glioma tissues and cells, and glioma patients with high MSC-AS1 expression tend to have lower overall survival rate. MSC-AS1 suppression reduced the IC50 value of TMZ and proliferation, promoted apoptosis and TMZ sensitivity, and affected PI3K/Akt pathway in TMZ-resistant glioma cells. MSC-AS1 acted as miR-373-3p sponge, and miR-373-3p directly targeted CPEB4. Silencing miR-373-3p reversed the promoting effect of MSC-AS1 or CPEB4 knockdown on TMZ sensitivity. Furthermore, MSC-AS1 knockdown inhibited TMZ-resistant glioma growth in vivo by regulating miR-373-3p/CPEB4 axis through PI3K/Akt pathway. Collectively, MSC-AS1 knockdown suppressed cell growth and the chemoresistance of glioma cells to TMZ by regulating miR-373-3p/CPEB4 axis in vitro and in vivo through activating PI3K/Akt pathway.

2021 ◽  
Vol 12 (1) ◽  
pp. 456-468
Author(s):  
Xianbing Meng ◽  
Hailong Tian ◽  
Wenqiang Guo ◽  
Zhigang Wang

Abstract Circular RNAs contribute to the progression of glioma. However, the biological role and underlying mechanism of circ_0082375 in glioma remain unclear. Quantitative real-time PCR and Western blot assay were used to evaluate the expression levels of circ_0082375, microRNA-485-5p, and Wnt family member 7B (Wnt7B). The overall survival of glioma patients was estimated by the Kaplan–Meier curve. Cell proliferation, apoptosis, invasion, and migration were detected by cell counting kit-8, 5-ethynyl-2 -deoxyuridine (EdU) staining, flow cytometry, and transwell assays, respectively. Glucose level and lactate production were determined using glucose and lactate assay kits. In vitro angiogenesis assay was used to evaluate the angiogenesis of glioma cells. The interaction between microRNA (miR)-485-5p and circ_0082375 or Wnt family member 7B (Wnt7B) was verified by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft model was used to verify the function of circ_0082375 in vivo. circ_0082375 was upregulated in glioma tissues, and it was closely related to the prognosis of glioma patients. circ_0082375 knockdown suppressed cell proliferation, migration, invasion, angiogenesis, glycolysis, and epithelial-mesenchymal transition (EMT), and promoted cell apoptosis in glioma cells. irc_0082375 was a sponge of miR-485-5p, which directly targeted Wnt7B. Knockdown of circ_0082375 inhibited the malignancy, angiogenesis, and glycolysis of glioma cells in vitro by sponging miR-485-5p. Besides, circ_0082375 knockdown hampered the growth of glioma growth by regulating the miR-485-5p/Wnt7B axis in vivo. Altogether, circ_0082375 regulated miR-485-5p/Wnt7B axis to promote the malignancy, angiogenesis, and glycolysis of glioma cells, thereby contributing to the progression of glioma.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Linghui Qin ◽  
Xiaosong Sun ◽  
Fei Zhou ◽  
Cheng Liu

Abstract Background Circular RNA low-density lipoprotein receptor-related protein 6 (circLRP6) is considered as an oncogene in many types of cancers. However, the function and mechanisms of circLRP6 in prostate cancer (PCa) tumorigenesis remain largely undefined. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were conducted to assess the expression of circLRP6, microRNA (miR)-330-5p, and nuclear receptor binding protein 1 (NRBP1). Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2’-deoxyuridine (EDU) incorporation, flow cytometry, transwell, wound healing, and western blot assays were performed to detect cell proliferation, apoptosis, and metastasis in vitro. Subcutaneous tumor growth was observed in nude mice to investigate the role of circLRP6 in vivo. The targeting relationship between miR-330-5p and NRBP1 or circLRP6 was verified using dual-luciferase reporter, pull-down, and RNA immunoprecipitation (RIP) assays. Immunohistochemistry was employed to test relative protein expression. Results CircLRP6 was highly expressed in PCa tissues and cells, knockdown of circLRP6 impaired PCa cell growth and metastasis in vitro by affecting cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Mechanistic studies showed that circLRP6 could competitively bind with miR-330-5p to prevent the degradation of its target gene NRBP1. Rescue assay suggested that miR-330-5p inhibition reversed the inhibitory effects of circLRP6 knockdown on PCa cell growth and metastasis. Moreover, overexpression of miR-330-5p suppressed PCa progression via NRBP1. Notably, tumor formation assay indicated that circLRP6 silencing impeded tumor growth and EMT in vivo. Conclusion Our findings demonstrated that circLRP6 promoted PCa tumorigenesis and metastasis through miR-330-5p/NRBP1 axis, suggesting a potential therapeutic target for PCa.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xixi Li ◽  
Shengli Hu ◽  
Haitao Yin ◽  
Hongbo Zhang ◽  
Dan Zhou ◽  
...  

Abstract Background Culex pipiens (Cx. pipiens) complex, which acts as a vector of viruses and is widespread and abundant worldwide, including West Nile virus, Japanese encephalitis virus, and Sindbis virus, can cause serious vector-borne diseases affecting human health. Unfortunately, mosquitoes have developed deltamethrin resistance because of its long-term overuse, representing a major challenge to mosquito control. Understanding the molecular regulatory mechanisms of resistance is vital to control mosquitoes. MicroRNAs (miRNAs) are short non-coding RNAs that have been demonstrated to be important regulators of gene expression across a wide variety of organisms, which might function in mosquito deltamethrin resistance. In the present study, we aimed to investigate the regulatory functions of miR-4448 and CYP4H31 in the formation of insecticidal resistance in mosquito Culex pipiens pallens. Methods We used quantitative real-time reverse transcription PCR to measure miR-4448 and CYP4H31 (encoding a cytochrome P450) expression levels. The regulatory functions of miR-4448 and CYP4H31 were assessed using dual-luciferase reporter assays. Then, oral feeding, RNA interference, and the American Centers for Disease Control and Prevention bottle bioassay were used to determine miR-4448’s association with deltamethrin resistance by targeting CYP4H31in vivo. Cell Counting Kit-8 (CCK-8) was also used to detect the viability of pIB/V5-His-CYP4H31-transfected C6/36 cells after deltamethrin treatment in vitro. Results MiR-4448 was downregulated in the deltamethrin-resistant strain (DR strain), whereas CYP4H31 was downregulated in deltamethrin-susceptible strain. CYP4H31 expression was downregulated by miR-4448 recognizing and binding to its 3′ untranslated region. Functional verification experiments showed that miR-4448 overexpression resulted in lower expression of CYP4H31. The mortality of miR-4448 mimic-injected DR strain mosquitoes was higher than that of the controls. CCK-8 assays showed that CYP4H31 decreased cellular resistance to deltamethrin in vitro and the mortality of the DR strain increased when CYP4H31 was knocked down in vivo. Conclusions In mosquitoes, miR-4448 participates in deltamethrin resistance by targeting CYP4H31. The results of the present study increase our understanding of deltamethrin resistance mechanisms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Wang ◽  
Yehui Zhou ◽  
Liang Jiang ◽  
Linlin Lu ◽  
Tiantian Dai ◽  
...  

Abstract Background Chemotherapeutic resistance is the main cause of clinical treatment failure and poor prognosis in triple-negative breast cancer (TNBC). There is no research on chemotherapeutic resistance in TNBC from the perspective of circular RNAs (circRNAs). Methods TNBC-related circRNAs were identified based on the GSE101124 dataset. Quantitative reverse transcription PCR was used to detect the expression level of circWAC in TNBC cells and tissues. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circWAC in TNBC. Results CircWAC was highly expressed in TNBC and was associated with worse TNBC patient prognosis. Subsequently, it was verified that downregulation of circWAC can increase the sensitivity of TNBC cells to paclitaxel (PTX) in vitro and in vivo. The expression of miR-142 was negatively correlated with circWAC in TNBC. The interaction between circWAC and miR-142 in TNBC cells was confirmed by RNA immunoprecipitation assays, luciferase reporter assays, pulldown assays, and fluorescence in situ hybridization. Mechanistically, circWAC acted as a miR-142 sponge to relieve the repressive effect of miR-142 on its target WWP1. In addition, the overall survival of TNBC patients with high expression of miR-142 was significantly better than that of patients with low expression of miR-142, and these results were verified in public databases. MiR-142 regulated the expression of WWP1 and the activity of the PI3K/AKT pathway. It was confirmed that WWP1 is highly expressed in TNBC and that the prognosis of patients with high WWP1 expression is poor. Conclusions CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


2020 ◽  
Author(s):  
Kebin Zheng ◽  
Haipeng Xie ◽  
Xiaosong Wu ◽  
Xichao Wen ◽  
Zhaomu Zeng ◽  
...  

Abstract BackgroundIncreasing studies have revealed that circular RNAs (CircRNAs) make great contribution to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A in glioma. MethodsFirstly, RT-PCR was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and a cell model of CircPIP5K1A overexpression and knockdown was constructed. Subsequently, cell proliferation and viability were detected by CCK8 method and BrdU staining, apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (including Caspase3, Bax and Bcl2) and epithelial-mesenchymal transition (EMT) markers (including E-cadherin, Vimentin and N-cadherin) by western blot or RT-PCR. ResultsThe results manifested that CircPIP5K1A was obviously upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was distinctly related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated the proliferation, invasion, EMT of glioma cells, and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A also upregulated TCF12 and PI3K/AKT pathway activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while dual luciferase reporter assay and RNA immunocoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. ConclusionsAltogether, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates the development of glioma through the modulating miR-515-5p mediated TCF12/PI3K/AKT axis.


2015 ◽  
Vol 37 (5) ◽  
pp. 1956-1966 ◽  
Author(s):  
Shiping Liu ◽  
Peng Feng

Background/Aims: Increasing evidence has shown that miR-203 plays important role in human cancer progression. However, little is known about the function of miR-203 in osteosarcoma (OS). Methods: The expression of miR-203 in OS tissues and cell lines were examined by qRT-PCR. The biological role of miR-20 in OS cell proliferation was examined in vitro and in vivo. The targets of miR-203 were identified by a luciferase reporter gene assay. Results: miR-203 was down regulated in OS tissues and cell lines; decreased miR-203 was associated with a poor overall survival in OS patients. Restoration of miR-203 expression reduced cell growth in vitro and suppressed tumorigenicity in vivo. In contrast, inhibition of miR-203 stimulated OS cell growth both in vitro and in vivo. In addition, TANK binding kinase 1 (TBK1) was identified as a direct target of miR-203; overexpression of TBK1 partly reversed the suppressive effects of miR-203. Furthermore, TBK1 was found up-regulated and inversely correlated with miR-203 in OS tissues. Conclusion: Taken together, these findings suggest that miR-203 acts as a tumor suppressor via regulation of TBK1 expression in OS progression, and miR-203 may be a promising therapeutic target for OS.


2006 ◽  
Vol 66 (23) ◽  
pp. 11331-11340 ◽  
Author(s):  
Tomohiro Kawaguchi ◽  
Yoji Yamashita ◽  
Masayuki Kanamori ◽  
Raelene Endersby ◽  
Krystof S. Bankiewicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document