active fragment
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 13)

H-INDEX

28
(FIVE YEARS 1)

Author(s):  
Natalia Fabisiak ◽  
Adam Fabisiak ◽  
Anna Chmielowiec-Korzeniowska ◽  
Leszek Tymczyna ◽  
Wojciech Kamysz ◽  
...  

Abstract Introduction Inflammatory bowel diseases (IBD) are a group of chronic gastrointestinal tract disorders with complex etiology, with intestinal dysbiosis as the most prominent factor. In this study, we assessed the anti-inflammatory and antibacterial actions of the human cathelicidin LL-37 and its shortest active fragment, KR-12 in the mouse models of colitis. Materials and methods Mouse models of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and dextran sulfate sodium (DSS) were used in the study. The extent of inflammation was evaluated based on the macro- and microscopic scores, quantification of myeloperoxidase (MPO) activity and microbiological analysis of stool samples. Results A preliminary study with LL-37 and KR-12 (1 mg/kg, ip, twice daily) showed a decrease in macroscopic and ulcer scores in the acute TNBS-induced model of colitis. We observed that KR-12 (5 mg/kg, ip, twice daily) reduced microscopic and ulcer scores in the semi-chronic and chronic TNBS-induced models of colitis compared with inflamed mice. Furthermore, qualitative and quantitative changes in colonic microbiota were observed: KR-12 (5 mg/kg, ip, twice daily) decreased the overall number of bacteria, Escherichia coli and coli group bacteria. In the semi-chronic DSS-induced model, KR-12 attenuated intestinal inflammation as demonstrated by a reduction in macroscopic score and colon damage score and MPO activity. Conclusions We demonstrated that KR-12 alleviates inflammation in four different mouse models of colitis what suggests KR-12 and cathelicidins as a whole are worth being considered as a potential therapeutic option in the treatment of IBD.


2020 ◽  
pp. 1-12
Author(s):  
Yoshiki Niimi ◽  
Yasuaki Mizutani ◽  
Hisako Akiyama ◽  
Hirohisa Watanabe ◽  
Ryoichi Shiroki ◽  
...  

Background: As mutations in glucocerebrosidase 1 (GBA1) are a major risk factor for Parkinson’s disease (PD), decreased GBA1 activity might play an important role in the pathogenesis of the disease. However, there are currently no reports on glucosylceramide levels in the cerebrospinal fluid (CSF) in PD. Objective: We investigated whether glucosylceramide accumulation and abnormal immune status in the brain are associated with PD. Methods: We measured glucosylceramide by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) as well as levels of the active fragment of complement C5, C5a, in the CSF of 33 PD, 15 amyotrophic lateral sclerosis (ALS) and 22 neurologically normal control (NNC) subjects. Serum C5a levels in all PD and ALS cases and in a limited number of NNC subjects (n = 8) were also measured. Results: C5a levels in CSF were significantly downregulated in PD compared with NNC. Moreover, CSF C5a/serum C5a ratio showed pronounced perturbations in PD and ALS patients. LC-ESI-MS/MS revealed a statistically significant accumulation of a specific subspecies of glucosylceramide (d18 : 1/C23 : 0 acyl chain fatty acid) in ALS, but not in PD. Interestingly, CSF glucosylceramide (d18 : 1/C23 : 0) exhibited a significant correlation with CSF C5a levels in PD, but not ALS. No correlation was observed between C5a levels or glucosylceramide subspecies content and disease duration, levodopa equivalent daily dose or Hoehn & Yahr staging in PD. Conclusion: Our findings demonstrate complement dysregulation without glucosylceramide accumulation in PD CSF. Furthermore, we found an association between a specific glucosylceramide subspecies and immune status in PD.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shuxin Liu ◽  
Jiwei Luo ◽  
Xiangkai Zhen ◽  
Jiazhang Qiu ◽  
Songying Ouyang ◽  
...  

Legionella pneumophila extensively modulates the host ubiquitin network to create the Legionella-containing vacuole (LCV) for its replication. Many of its virulence factors function as ubiquitin ligases or deubiquitinases (DUBs). Here, we identify Lem27 as a DUB that displays a preference for diubiquitin formed by K6, K11, or K48. Lem27 is associated with the LCV where it regulates Rab10 ubiquitination in concert with SidC and SdcA, two bacterial E3 ubiquitin ligases. Structural analysis of the complex formed by an active fragment of Lem27 and the substrate-based suicide inhibitor ubiquitin-propargylamide (PA) reveals that it harbors a fold resembling those in the OTU1 DUB subfamily with a Cys-His catalytic dyad and that it recognizes ubiquitin via extensive hydrogen bonding at six contact sites. Our results establish Lem27 as a DUB that functions to regulate protein ubiquitination on L. pneumophila phagosomes by counteracting the activity of bacterial ubiquitin E3 ligases.


2020 ◽  
Vol 88 (3) ◽  
pp. 38
Author(s):  
Aleksandra Tencheva ◽  
Radoslav Chayrov ◽  
Petko Mandjukov ◽  
Dancho Danalev ◽  
Ivanka Stankova

In the present work, the hydrolytic stability of new memantine analogues modified with amino acids, at different pH corresponding to the human biological liquids and organs, was evaluated. Memantine is an uncompetitive N-methyl-d-aspartate receptor antagonist with low-to moderate-affinity. In addition, it is the first representative of a novel class of Alzheimer’s disease (AD) medications acting on the glutamatergic system by blocking N-methyl-D-aspartate receptors. Generally, prodrugs are compounds aiming to improve stability of active fragment and to facilitate transportation across the cell membranes or lipid barriers. The investigated series of prodrugs include modified memantine with the following amino acids: alanine, β-alanine, glycine, phenylalanine, and valine. Hydrolytic stability was determined at two different pH values 2.0 and 7.4 at 37 °C, similar to those in the human stomach and blood plasma. Specially developed UV-VIS spectrophotometric method for quantification of the concentrations of unchanged compounds was applied in the kinetic studies. Val-MEM is the most stable in neutral medium and at 37 °C compound with t1/2 = 50.2 h. The compound Phe-MEM has also very good hydrolytic stability with t1/2 = 29.6 h. The order of other compounds is: Val-MEM ≫ Phe-MEM ≫ Ala-MEM ≈ Val-MEM > β-Ala-MEM. Ala-MEM and Gly-MEM are the most stable compounds at acid condition with almost identical values for t1/2 = 17.8 h and t1/2 = 16.3 h, respectively. The stability of tested compounds in acid conditions are relatively less than in neutral one. They are ordered as follows: Ala-MEM ≈ Gly-MEM > Val-MEM ≈ Phe-MEM ≈ β-Ala-MEM. All compounds have relatively good hydrolytic stability of more than 10 h at both neutral and acid conditions, which is quite enough in order to pass in the blood circulation and to be used as a potential antimicrobial agent.


Author(s):  
Shuxin Liu ◽  
Jiwei Luo ◽  
Xiangkai Zhen ◽  
Jiazhang Qiu ◽  
Songying Ouyang ◽  
...  

AbstractLegionella pneumophila extensively modulates the host ubiquitin network to create the Legionella-containing vacuole (LCV) for its replication. Many of its virulence factors function as ubiquitin ligases or deubiquitinases (DUBs). Here we identified Lem27 as a DUB that displays a preference for diubiquitin formed by K6, K11 or K48. Lem27 is associated with the LCV where it regulates Rab10 ubiquitination in concert with SidC and SdcA, two bacterial E3 ubiquitin ligases. Structural analysis of the complex formed by an active fragment of Lem27 and the substrate-based suicide inhibitor ubiquitin-propargylamide (PA) reveals that it harbors a fold resembling those in the OTU1 DUB subfamily with a Cys-His catalytic dyad and that it recognizes ubiquitin via extensive hydrogen bonding at six contact sites. Our results establish Lem27 as a deubiquitinase that functions to regulate protein ubiquitination on L. pneumophila phagosomes by counteracting the activity of bacterial ubiquitin E3 ligases.


2020 ◽  
Author(s):  
Qi Yang ◽  
Jin Wang ◽  
Xiaoxian Tian ◽  
Fei Chen ◽  
Jing Lan ◽  
...  

Abstract Brachydactyly type A1(BDA-1) is an autosomal dominant disorder which is caused by heterozygous pathogenic variants in a specific region of the N-terminal active fragment of Indian Hedgehog ( IHH ). The disorder is mainly characterized by shortening or missing of the middle phalanges. The following study revealed a novel heterozygous missense variant c.299A>G (p.D100G) at the mutational hotspot of IHH gene after performing whole-exome sequencing in the proband of a Chinese family with BDA-1. The variant co-segregated with BDA-1 in the pedigree, showed 100% penetrance for phalange phenotype with variable expressivity. This finding expanded the variants on IHH gene which contribute to the cause of BDA-1.


2019 ◽  
Author(s):  
Qi Yang ◽  
Jin Wang ◽  
Xiaoxian Tian ◽  
Fei Chen ◽  
Jing Lan ◽  
...  

Abstract Brachydactyly type A1(BDA-1) is an autosomal dominant disorder which is caused by heterozygous pathogenic variants in a specific region of the N-terminal active fragment of Indian Hedgehog ( IHH ). The disorder is mainly characterized by shortening or missing of the middle phalanges. The following study revealed a novel heterozygous missense variant c.299A>G (p.D100G) at the mutational hotspot of IHH gene after performing whole-exome sequencing in the proband of a Chinese family with BDA-1. The variant co-segregated with BDA-1 in the pedigree, showed 100% penetrance for phalange phenotype with variable expressivity. This finding expanded the variants on IHH gene which contribute to the cause of BDA-1.


Sign in / Sign up

Export Citation Format

Share Document