Improved fast compressive tracking for low-altitude flying target tracking

Author(s):  
Yuanhao Cheng ◽  
Sun’an Wang ◽  
Dehong Yu
2018 ◽  
Vol 10 (9) ◽  
pp. 1347 ◽  
Author(s):  
Ting Chen ◽  
Andrea Pennisi ◽  
Zhi Li ◽  
Yanning Zhang ◽  
Hichem Sahli

Multi-Object Tracking (MOT) in airborne videos is a challenging problem due to the uncertain airborne vehicle motion, vibrations of the mounted camera, unreliable detections, changes of size, appearance and motion of the moving objects and occlusions caused by the interaction between moving and static objects in the scene. To deal with these problems, this work proposes a four-stage hierarchical association framework for multiple object tracking in airborne video. The proposed framework combines Data Association-based Tracking (DAT) methods and target tracking using a compressive tracking approach, to robustly track objects in complex airborne surveillance scenes. In each association stage, different sets of tracklets and detections are associated to efficiently handle local tracklet generation, local trajectory construction, global drifting tracklet correction and global fragmented tracklet linking. Experiments with challenging airborne videos show significant tracking improvement compared to existing state-of-the-art methods.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yunpu Zhang ◽  
Gongguo Xu ◽  
Ganlin Shan

Purpose Continuous and stable tracking of the low-altitude maneuvering targets is usually difficult due to terrain occlusion and Doppler blind zone (DBZ). This paper aims to present a non-myopic scheduling method of multiple radar sensors for tracking the low-altitude maneuvering targets. In this scheduling problem, the best sensors are systematically selected to observe targets for getting the best tracking accuracy under maintaining the low intercepted probability of a multi-sensor system. Design/methodology/approach First, the sensor scheduling process is formulated within the partially observable Markov decision process framework. Second, the interacting multiple model algorithm and the cubature Kalman filter algorithm are combined to estimate the target state, and the DBZ information is applied to estimate the target state when the measurement information is missing. Then, an approximate method based on a cubature sampling strategy is put forward to calculate the future expected objective of the multi-step scheduling process. Furthermore, an improved quantum particle swarm optimization (QPSO) algorithm is presented to solve the sensor scheduling action quickly. Optimization problem, an improved QPSO algorithm is presented to solve the sensor scheduling action quickly. Findings Compared with the traditional scheduling methods, the proposed method can maintain higher target tracking accuracy with a low intercepted probability. And the proposed target state estimation method in DBZ has better tracking performance. Originality/value In this paper, DBZ, sensor intercepted probability and complex terrain environment are considered in sensor scheduling, which has good practical application in a complex environment.


2019 ◽  
Vol 2019 (21) ◽  
pp. 7672-7676
Author(s):  
Tao Hong ◽  
Wu Zhang ◽  
Weishi Chen ◽  
Xiaolong Chen ◽  
Xinru Fu

Author(s):  
Ting Chen ◽  
Andrea Pennisi ◽  
Zhi Li ◽  
Yanning Zhang ◽  
Hichem Sahli

Multi-object tracking (MOT) in airborne videos is a challenging problem due to the uncertain airborne vehicle motion, vibrations of the mounted camera, unreliable detections, size, appearance and motion of the moving objects as well as occlusions due to the interaction between the moving objects and with other static objects in the scene.To deal with these problems, this work proposes a four-stage Hierarchical Association framework for multiple object Tracking in Airborne video (HATA). The proposed framework combines data association-based tracking (DAT) methods and target tracking using a Compressive Tracking approach, to robustly track objects in complex airborne surveillance scenes. In each association stage, different sets of tracklets and detections are associated to efficiently handle local tracklet generation, local trajectory construction, global drifting tracklet correction and global fragmented tracklet linking. Experiments with challenging airborne video datasets show significant tracking improvement compared to existing state-of-art methods.


2014 ◽  
Vol 602-605 ◽  
pp. 1879-1882
Author(s):  
Ling Jing Meng ◽  
Dong Li ◽  
Hai Bo Liu

The main impact of multipath effect on low-altitude radar measurement is elevated in this paper. The influence of multipath effect on monopulse radar measurement of elevation is analyzed. Examples suggest that the multipath error caused by the signals from pattern main lobe of radar antenna should be mainly considered in the actual project. According to the three elevation range of reflected signal entering the radar beam area, the multipath error model of elevation is established. The problem of anti-multipath interference for low-altitude target tracking with radar is solved by analyzing the error source which causes multipath effect.


1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


Sign in / Sign up

Export Citation Format

Share Document