compressive tracking
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 6 (2) ◽  
pp. 3224-3231
Author(s):  
Wanquan Yan ◽  
Qingpeng Ding ◽  
Jianghua Chen ◽  
Yunhui Liu ◽  
Shing Shin Cheng

2020 ◽  
Vol 32 (4) ◽  
pp. 616-627
Author(s):  
Yanping Tang ◽  
Canlong Zhang ◽  
Yanru Li ◽  
Zhixin Li
Keyword(s):  

Author(s):  
Wenhao Wang ◽  
Mingxin Jiang ◽  
Xiaobing Chen ◽  
Li Hua ◽  
Shangbing Gao

In the original compression tracking algorithm, the size of the tracking box is fixed. There should be better tracking results for scale-invariant objects, but worse tracking results for scale-variant objects. To overcome this defect, a scale-adaptive compressive tracking (CT) algorithm is proposed. First of all, the imbalance of the gray and texture features in the original CT algorithm is balanced by the multi-feature method, which makes the algorithm more robust. Then, searching different candidate regions by using the method of multi-scale search along with feature normalization makes the features extracted from different scales comparable. Finally, the candidate region with the maximum discriminate degree is selected as the object region. Thus, the tracking-box size is adaptive. The experimental results show that when the object scale changes, the improving CT algorithm has higher accuracy and robustness than the original CT algorithm.


2019 ◽  
Vol 78 (16) ◽  
pp. 22463-22477 ◽  
Author(s):  
Jinguang Chen ◽  
Xiaoxing Li ◽  
Mingming Wang ◽  
Lili Ma ◽  
Bugao Xu

2018 ◽  
Vol 12 (8) ◽  
pp. 1200-1206 ◽  
Author(s):  
Shuifa Sun ◽  
Shichao Liu ◽  
Shiwei Kang ◽  
Chong Xia ◽  
Zhiping Dan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document