scholarly journals BMO Solvability and Absolute Continuity of Caloric Measure

Author(s):  
Alyssa Genschaw ◽  
Steve Hofmann
2019 ◽  
Author(s):  
◽  
Alyssa Genschaw

This thesis is devoted to the study of parabolic measure corresponding to a divergence form parabolic operator. We first extend to the parabolic setting a number of basic results that are well known in the elliptic case. Then following a result of Bennewitz-Lewis for non-doubling harmonic measure, we prove a criterion for non-doubling caloric measure to satisfy a weak reverse Holder inequality on an open set [omega] R(n+1), assuming as a background hypothesis only that the essential boundary of [omega] satisfies an appropriate parabolic version of Ahlfors-David regularity (which entails some backwards in time thickness). We then show that the weak reverse Holder estimate is equivalent to solvability of the initial Dirichlet problem with "lateral" data in [Lp], for some p less than [infinity]. Finally, we prove that for the heat equation, BMO-solvability implies scale invariant quantitative absolute continuity of caloric measure with respect to surface measure, in an open set [omega] with time-backwards ADR boundary. Moreover, the same results apply to the parabolic measure associated to a uniformly parabolic divergence form operator (L), with estimates depending only on dimension, the ADR constants, and parabolicity, provided that the continuous Dirichlet problem is solvable for (L) in [omega]. By a result of Fabes, Garofalo and Lanconelli [FGL], this includes the case of [C1]-Dini coefficients.


Sign in / Sign up

Export Citation Format

Share Document