reverse hölder
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arturo Popoli

Abstract We study the higher integrability of weights satisfying a reverse Hölder inequality ( ⨏ I u β ) 1 β ≤ B ⁢ ( ⨏ I u α ) 1 α {\biggl{(}\fint_{I}u^{\beta}\biggr{)}^{\frac{1}{\beta}}}\leq B{\biggl{(}\fint_{I}u^{\alpha}\biggr{)}^{\frac{1}{\alpha}}} for some B > 1 B>1 and given α < β \alpha<\beta , in the limit cases when α ∈ { - ∞ , 0 } \alpha\in\{-\infty,0\} and/or β ∈ { 0 , + ∞ } \beta\in\{0,+\infty\} . The results apply to the Gehring and Muckenhoupt weights and their corresponding limit classes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guannan Shi ◽  
Shusen Ding ◽  
Bing Liu

AbstractWe introduce the non-homogeneous Dirac-harmonic equation for differential forms and characterize the basic properties of solutions to this new type of differential equations, including the norm estimates and the convergency of sequences of the solutions. As applications, we prove the existence and uniqueness of the solutions to a special non-homogeneous Dirac-harmonic equation and its corresponding reverse Hölder inequality.


2021 ◽  
Vol 56 (1) ◽  
pp. 28-38
Author(s):  
A.O. Korenovskii

For a positive function $f$ on the interval $[0,1]$, the power mean of order $p\in\mathbb R$ is defined by \smallskip\centerline{$\displaystyle\|\, f\,\|_p=\left(\int_0^1 f^p(x)\,dx\right)^{1/p}\quad(p\ne0),\qquad\|\, f\,\|_0=\exp\left(\int_0^1\ln f(x)\,dx\right).$} Assume that $0<A<B$, $0<\theta<1$ and consider the step function$g_{A<B,\theta}=B\cdot\chi_{[0,\theta)}+A\cdot\chi_{[\theta,1]}$, where $\chi_E$ is the characteristic function of the set $E$. Let $-\infty<p<q<+\infty$. The main result of this work consists in finding the term \smallskip\centerline{$\displaystyleC_{p<q,A<B}=\max\limits_{0\le\theta\le1}\frac{\|\,g_{A<B,\theta}\,\|_q}{\|\,g_{A<B,\theta}\,\|_p}.$} \smallskip For fixed $p<q$, we study the behaviour of $C_{p<q,A<B}$ and $\theta_{p<q,A<B}$ with respect to $\beta=B/A\in(1,+\infty)$.The cases $p=0$ or $q=0$ are considered separately. The results of this work can be used in the study of the extremal properties of classes of functions, which satisfy the inverse H\"older inequality, e.g. the Muckenhoupt and Gehring ones. For functions from the Gurov-Reshetnyak classes, a similar problem has been investigated in~[4].


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Agnieszka Hejna

AbstractFor a normalized root system R in $${\mathbb {R}}^N$$ R N and a multiplicity function $$k\ge 0$$ k ≥ 0 let $${\mathbf {N}}=N+\sum _{\alpha \in R} k(\alpha )$$ N = N + ∑ α ∈ R k ( α ) . We denote by $$dw({\mathbf {x}})=\varPi _{\alpha \in R}|\langle {\mathbf {x}},\alpha \rangle |^{k(\alpha )}\,d{\mathbf {x}}$$ d w ( x ) = Π α ∈ R | ⟨ x , α ⟩ | k ( α ) d x the associated measure in $${\mathbb {R}}^N$$ R N . Let $$L=-\varDelta +V$$ L = - Δ + V , $$V\ge 0$$ V ≥ 0 , be the Dunkl–Schrödinger operator on $${\mathbb {R}}^N$$ R N . Assume that there exists $$q >\max (1,\frac{{\mathbf {N}}}{2})$$ q > max ( 1 , N 2 ) such that V belongs to the reverse Hölder class $$\mathrm{{RH}}^{q}(dw)$$ RH q ( d w ) . We prove the Fefferman–Phong inequality for L. As an application, we conclude that the Hardy space $$H^1_{L}$$ H L 1 , which is originally defined by means of the maximal function associated with the semigroup $$e^{-tL}$$ e - t L , admits an atomic decomposition with local atoms in the sense of Goldberg, where their localizations are adapted to V.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yanping Chen ◽  
Wenyu Tao

Let L = − Δ + μ be the generalized Schrödinger operator on ℝ d , d ≥ 3 , where μ ≠ 0 is a nonnegative Radon measure satisfying certain scale-invariant Kato conditions and doubling conditions. In this work, we give a new BMO space associated to the generalized Schrödinger operator L , BM O θ , L , which is bigger than the BMO spaces related to the classical Schrödinger operators A = − Δ + V , with V a potential satisfying a reverse Hölder inequality introduced by Dziubański et al. in 2005. Besides, the boundedness of the Littlewood-Paley operators associated to L in BM O θ , L also be proved.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
S. H. Saker ◽  
S. S. Rabie ◽  
R. P. Agarwal

In this paper, we will prove some fundamental properties of the discrete power mean operator M p u n = 1 / n ∑ k = 1 n   u p k 1 / p , for   n ∈ I ⊆ ℤ + , of order p , where u is a nonnegative discrete weight defined on I ⊆ ℤ + the set of the nonnegative integers. We also establish some lower and upper bounds of the composition of different operators with different powers. Next, we will study the structure of the generalized discrete class B p q B of weights that satisfy the reverse Hölder inequality   M q u ≤ B M p u , for positive real numbers p , q , and B such that 0 < p < q and B > 1 . For applications, we will prove some self-improving properties of weights from B p q B and derive the self improving properties of the discrete Gehring weights as a special case. The paper ends by a conjecture with an illustrative sharp example.


2020 ◽  
Vol 57 (4) ◽  
pp. 465-507
Author(s):  
Hua Wang

Let be a Schrödinger operator on the Heisenberg group , where is the sublaplacian on and the nonnegative potential V belongs to the reverse Hölder class with . Here is the homogeneous dimension of . Assume that is the heat semigroup generated by. The Lusin area integral and the Littlewood–Paley–Stein function associated with the Schrödinger operator are defined, respectively, bywhereandWhere is a parameter. In this article, the author shows that there is a relationship between and the operator and for any , the following inequality holds true:Based on this inequality and known results for the Lusin area integral , the author establishes the strong-type and weak-type estimates for the Littlewood–Paley–Stein function on . In this article, the author also introduces a class of Morrey spaces associated with the Schrödinger operator on . By using some pointwise estimates of the kernels related to the nonnegative potential V, the author establishes the boundedness properties of the operator acting on the Morrey spaces for an appropriate choice of . It can be shown that the same conclusions hold for the operator on generalized Morrey spaces as well.


2020 ◽  
Vol 491 (2) ◽  
pp. 124352
Author(s):  
Le Xuan Truong ◽  
Tran Tri Dung ◽  
Nguyen Ngoc Trong ◽  
Nguyen Thanh Tung

Sign in / Sign up

Export Citation Format

Share Document