Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area

2012 ◽  
Vol 107 (1) ◽  
pp. 203-213 ◽  
Author(s):  
Zhenwu Fu ◽  
Hui Wan ◽  
Xiaoshuang Hu ◽  
Qun Cui ◽  
Guofeng Guan
BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4284-4303
Author(s):  
Junkang Xie ◽  
Qiaoning Han ◽  
Bo Feng ◽  
Zuguang Liu

An amphiphilic mesoporous carbon-based solid acid (LCx-SO3H) with high specific surface area was prepared from kraft lignin that was carbonized using a phosphoric acid treatment. It was found that the specific surface area, pore structure, and amphiphilic nature of the catalyst was effectively controlled through adjusting the phosphoric acid dosage during lignin carbonization. Under optimum preparation conditions, the specific surface area, pore volume, and average pore size of the catalyst were 282.2 m2/g, 0.26 cm3/g, and 6.73 nm, respectively. The performance of this solid acid catalyst for the hydration of α-pinene was characterized via gas chromatography analysis. The conversion of α-pinene and the yield of α-terpineol during hydration reaction were as high as 95.3% and 55.3%, respectively; these results were greater than the results from other hydration methods with sulfuric acid and commercially available solid acid catalysts (e.g., Amberlyst-15). After five recycles of the carbon-based solid acid without regeneration, conversion of α-pinene decreased from 95.3% to 92.6%, and the yield of α-terpineol decreased from 55.3% to 47.6%. These observations indicated that the solid acid catalyst derived from kraft lignin carbonization has high potential as a hydration agent for α-pinene.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1623
Author(s):  
Qimeng Jiang ◽  
Guihua Yang ◽  
Fangong Kong ◽  
Pedram Fatehi ◽  
Xiaoying Wang

Solid acid catalysts generally show the disadvantage of low acid amount and low recycling rate. To solve these problems, corn stalk-based solid acid catalysts were synthesized through carbonization and sulfonation processes in this work. The results showed that besides the rod-like structure inherited from raw corn stalk, the catalysts contained some small broken pieces on the surface, and the specific surface area varied from 1120 to 1640 m2/g. The functional groups (-SO3H) were successfully introduced onto the surface of the obtained solid acid catalysts. The acid amount varied between 1.2 and 2.4 mmol/g, which was higher than most of solid acid catalysts. The catalyst produced at 800 °C for 6 h in carbonation and then at 150 °C for 8 h in sulfonation had larger specific surface area and more sulfonate groups. In the degradation of lignin, the use of catalyst led to the generation of more aromatic compounds (65.6 wt. %) compared to that without using the catalyst (40.5 wt. %). In addition, a stable yield of reaction (85%) was obtained after four reuses. Therefore, corn stalk is suitable for high-value utilization to prepare high-acid amount biochar-based catalyst.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3566
Author(s):  
Yawen Wang ◽  
Zahra Gohari Bajestani ◽  
Jérôme Lhoste ◽  
Sandy Auguste ◽  
Annie Hémon-Ribaud ◽  
...  

High-specific-surface-area MgF2 was prepared by microwave-assisted solvothermal synthesis. The influences of the solvent and the magnesium precursors, and the calcination atmospheres, on the nanoparticle sizes and specific surface areas, estimated by X-Ray Powder Diffraction, N2 sorption and TEM analyses, were investigated. Nanocrystallized (~7 nm) magnesium partially hydroxylated fluorides (MgF2−x(OH)x) with significant specific surface areas between 290 and 330 m2∙g−1 were obtained. After activation under gaseous HF, MgF2−x(OH)x catalysts underwent a large decrease of both their surface area and their hydroxide, rates as shown by their 19F and 1H solid-state NMR spectra. Expect for MgF2 prepared from the acetate precursor, an activity of 30–32 mmol/h∙g was obtained which was about 40% higher compared with that of MgF2 prepared using Trifluoroacetate method (21.6 mmol/h∙g).


Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 13334-13340 ◽  
Author(s):  
Hao Zhang ◽  
Xiaobin Xu ◽  
Haifeng Lin ◽  
Muhammad Aizaz Ud Din ◽  
Haiqing Wang ◽  
...  

Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites.


2017 ◽  
Vol 19 (45) ◽  
pp. 30418-30428 ◽  
Author(s):  
Yihong Xiao ◽  
Wanlu Zhu ◽  
Guohui Cai ◽  
Meilian Chen ◽  
Yong Zheng ◽  
...  

A novel non-stoichiometric YxInO3+δ (YIO-x, 0.8 ≤ x ≤ 1.04) perovskite catalyst with a large number of oxygen vacancies and high specific surface area was synthesized using glycine self-propagating gel combustion.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Sign in / Sign up

Export Citation Format

Share Document