specific surface areas
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 64)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Mingrui Han ◽  
Jinlong Jiang ◽  
Shangying Lu ◽  
Yong Jiang ◽  
Wencheng Ma ◽  
...  

2021 ◽  
Author(s):  
Wenna Ge ◽  
Zhixin Feng ◽  
Fusheng Zhang ◽  
Xiangge Bai ◽  
Shile Feng ◽  
...  

Abstract Cellulose nanocrystals (CNCs) self-assembled into a chiral nematic structure film is an advanced platform for the fabrication of fascinating sensing, photonic and chiral nematic materials. Despite extensive progress in the functions of CNCs, their chemoselectivity has rarely been reported. Here, we exploit a brand-new perspective of CNCs in chemoselectivity, which shows sensitive selectivity even between isomers of monosaccharides and disaccharide by generating discernible crystal patterns. This sensitive selectivity of glucose homologs is attributed to the selective interaction of carbohydrate–carbohydrate, which enables the tune of the photonic properties and chiral mesoporous structures. Moreover, based on the chemoselectivity, chiral mesoporous structures with tunable specific surface areas are assembled from CNC suspensions and glucose homologs. We envision that the sensitive chemoselectivity of CNC films could provide insights into the recognition of carbohydrates and the preparation of mesoporous carbon in numerous practical applications.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7603
Author(s):  
Xiaoyan Zou ◽  
Xianqing Li ◽  
Jizhen Zhang ◽  
Huantong Li ◽  
Man Guo ◽  
...  

This study is predominantly about the differences in shale pore structure and the controlling factors of shale gas content between Lower Silurian and Lower Cambrian from the upper Yangtze plate, which are of great significance to the occurrence mechanism of shale gas. The field emission scanning electron microscopy combined with Particles (Pores) and Cracks Analysis System software, CO2/N2 adsorption and the high-pressure mercury injection porosimetry, and methane adsorption were used to investigate characteristics of overall shale pore structure and organic matter pore, heterogeneity and gas content of the Lower Paleozoic in southern Sichuan Basin and northern Guizhou province from the upper Yangtze plate. Results show that porosity and the development of organic matter pores of the Lower Silurian are better than that of the Lower Cambrian, and there are four main types of pore, including interparticle pore, intraparticle pore, organic matter pore and micro-fracture. The micropores of the Lower Cambrian shale provide major pore volume and specific surface areas. In the Lower Silurian shale, there are mesopores besides micropores. Fractal dimensions representing pore structure complexity and heterogeneity gradually increase with the increase in pore volume and specific surface areas. There is a significant positive linear relationship between total organic carbon content and micropores volume and specific surface areas of the Lower Paleozoic shale, and the correlation of the Lower Silurian is more obvious than that of the Lower Cambrian. The plane porosity of organic matter increases with the increase in total organic carbon when it is less than 5%. The plane porosity of organic matter pores is positively correlated with clay minerals content and negatively correlated with brittle minerals content. The adsorption gas content of Lower Silurian and Lower Cambrian shale are 1.51–3.86 m3/t (average, 2.31 m3/t) and 0.35–2.38 m3/t (average, 1.36 m3/t). Total organic carbon, clay minerals and porosity are the main controlling factors for the differences in shale gas content between Lower Cambrian and Lower Silurian from the upper Yangtze plate. Probability entropy and organic matter plane porosity of the Lower Silurian are higher than those of Lower Cambrian shale, but form factor and roundness is smaller.


2021 ◽  
Vol 11 (9) ◽  
pp. 1534-1545
Author(s):  
Xuhui Wang ◽  
Jianchuan Sun ◽  
Shuaiqi Chen ◽  
Shuai Ren ◽  
Awang Gao ◽  
...  

A series of γ-alumina with different pore sizes (5.7 nm–21.6 nm) and similar specific surface areas were synthesized via an organic-free method and their adsorption rates and capacities for Congo red (CR), direct blue 78 (DB78) and direct green 26 (DG26) were investigated. The kinetics study reveals that the dye adsorptions of all γ-alumina samples fit the pseudo-2nd-order model. For CR, its k2 and the pore size of absorbent are in a linear relationship at low dye concentrations. Both of the experimental results and Langmuir isotherm calculation results suggest that the dye adsorption capacities of the γ-alumina prepared in our lab are much higher than those of other γ-alumina reported in literatures. GA-1 with the largest specific area of surface and largest size of pores exhibits a CR adsorption capacity up to 4213.6 mg/g. In addition, initial dye adsorption rates of the γ-alumina prepared in-house are much higher than that of the γ-alumina prepared with the commercially available alumina under the same conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Baibing Wang ◽  
Nanqi Ouyang ◽  
Qin Zhang ◽  
Shizhang Zheng ◽  
Yang Li ◽  
...  

Vernadite has excellent oxidation and adsorption performance, suggesting that it has good application prospects for the removal of phenolic substances and heavy metals from wastewater. In this study, after vernadite was synthesized by two different methods, the removal performance difference between the samples synthesized by the new and traditional methods (Ver-H and Ver-OH, respectively) was explored by sample characterization, phenol degradation, and Pb2+ adsorption experiments. The results show that, compared with Ver-OH, Ver-H has a larger particle size, specific surface areas, and total organic carbon (TOC) degradation capacity; the equilibrium degradation capacity of TOC of Ver-H was increased by 31.3%. The difference in the amount of TOC degradation may be attributed to more Mn(IV) oxygen vacancies in Ver-H, which facilitate the removal of intermediate products formed during phenol degradation. In addition, the larger specific surface areas provide the mineral surface with a larger number of active sites; Ver-H can therefore adsorb more intermediate products to promote their mineralization into CO2. The adsorptions of Pb2+ by Ver-H and Ver-OH are both consistent with Langmuir isothermal adsorption, and the maximum adsorption capacities are 569.79 g/kg and 623.10 g/kg, respectively. The lack of significant difference indicates that both vernadites have strong adsorption capacities for Pb2+.


Cellulose ◽  
2021 ◽  
Author(s):  
Baldur Schroeter ◽  
Velislava P. Yonkova ◽  
Monika Goslinska ◽  
Maike Orth ◽  
Swantje Pietsch ◽  
...  

AbstractAim of this work is to apply protective and homogeneous shellac coating layers on the surface of hydrophilic open-pore cellulose aerogel particles with low densities ≤ 0.1 g/cm3 and high specific surface areas in the range of ~ 400–450 m2/g while keeping the aerogels’ microstructure intact during processing. For this purpose, an innovative miniaturized spouted bed setup was used. Successful process settings for application of enclosed films on aerogel surfaces without intrusion of coating material into the pores were determined. Precise control of coating layer thickness in the range of 10–50 µm was achieved due to variation of coating solution amount without agglomeration and clogging events occurring during processing. Comparison of bulk densities and specific surface areas before and after coating proved the intactness of the porous structure. Coating of particles loaded with vanillin led to controlled release, enhancing release half-life times from 20 to 1600 min. Overall, a successful strategy for coating of organic low-density aerogels was developed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ruidong Gao ◽  
Guang Zhang ◽  
Fanli Lu ◽  
Long Chen ◽  
Yang Li

Conjugated microporous polymers (CMPs) with robust architectures, facilely tunable pore sizes and large specific surface areas have emerged as an important class of porous materials due to their demonstrated prospects in various fields, e.g. gas storage/separation and heterogeneous catalysis. Herein, two new pyrrole-based CMPs with large specific surface areas and good stabilities were successfully prepared by one-step oxidative self-polycondensation of 1,2,4,5-tetra (pyrrol-2-ly)benzene or 1,3,5-tri (pyrrol-2-ly)benzene, respectively. Interestingly, both CMPs showed very high catalytic activity toward Knoevenagel condensation reaction, which was attributed to the inherent pore channels, high specific surface areas and abundant nitrogen sites within CMPs. Additionally, both CMPs displayed excellent recyclability with negligible degradation after 10 cycles. This work provides new possibilities into designing novel nitrogen-rich high-performance heterogeneous catalysts.


Macromol ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 84-93
Author(s):  
Xiaoyan Yu ◽  
Ting Zheng ◽  
Srikanth Pilla

A series of nitrogen-doped carbons (NCs) were prepared by the pyrolysis (300–900 °C) of crystalline polyazomethine (PAM) synthesized via a facile condensation reaction in methanol solvent. The controlled solvent evaporation resulted in PAM crystals in the form of nanosheet clusters with a sheet thickness of ~50 nm. Such architecture was maintained after pyrolysis, obtaining porous CNs of high specific surface areas of up to 700 m2/g. The resulting NCs were used as absorbents to remove aromatic Rhodamine B from water. The NC that pyrolyzed at 750 °C exhibited the highest adsorption capacity (0.025 mg/mg), which is attributed to its high surface area and surface condition.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Sun ◽  
Xianming Xiao ◽  
Qiang Wei ◽  
Peng Cheng ◽  
Hui Tian

Systematic studies are quite rare on the gas-bearing property and its controlling factors of the shallow Longmaxi shale outside the Sichuan Basin. In a previous study, the gas in place contents of a suit of Longmaxi shale samples with a depth range of 362–394 m from the well XK2, which was drilled in the Xishui area, Guizhou, southern China, were reported. In the present study, the pore structure parameters and irreducible water occurrence characteristics of those samples, and their influences on the gas-bearing property were further investigated. The results show that, compared to the dry sample, the non-micropore specific surface areas and micropore volumes of the moist sample are significantly reduced by an average value of 61 and 30%, respectively, and that the water averagely occupies 82 and 41% of the inorganic and organic non-micropore specific surface areas, respectively, and 44 and 18% of the inorganic and organic micropore volumes, respectively. The shallow shale reservoir is dominated by adsorbed gas. It accounts for 66–93% of the total gas. The water significantly decreases the adsorption capacity of the inorganic matte (mainly clay minerals) pores, but has a limited influence on that of the organic matter pores. The adsorbed gas occurs mostly in the organic matter nanopores, and even if the shales were highly saturated with the water, they can still store a certain amount of the adsorbed gas. These results are to provide some guides for the evaluation and exploration of the shallow Longmaxi shale located in the strongly tectonic transformation areas of southern China.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Anying Yuan ◽  
Guangsheng Fu ◽  
Junling Hou

In recent years, with the increases in coal mining depths, the risk of coal seam outburst occurrences has increased. Therefore, it is of major significance to study the multiscale structures of soft and hard coal deposits in order to prevent and control the coal and gas outbursts. In this research investigation, soft and hard coal multiscale structures were comprehensively examined using various laboratory methods. The results revealed the following: (1) From a macrostructural aspect, the physical and mechanical properties of the soft coal were weaker than those of the hard coal. It was found that the majority of the examined specimens were characterized by scaly structures without blocks larger than 50 mm. The hard coal was observed to be mainly massive with only a small part being clastic. Therefore, the structural characteristics were considered to be stable. (2) From a microstructural perspective, the surfaces of the soft coal specimens were observed to be rough. The pores were found to be more developed, with the edge of pores being mainly hackly. At the same time, fractures were also relatively developed, showing good connectivity. (3) From a micropore structural perspective, it was found that the BET-specific surface areas and BJH-specific surface areas of the soft coal specimens were higher than those of the hard coal specimens, which indicated that the gas adsorption and diffusion migration abilities of the soft coal were greater than those of the hard coal. (4) It was suggested from the study results that the ventilation and gas extraction processes should be strengthened in the mining activities of coal seams with high, soft stratification content. At the same time, the methods used for water injection modification should be enhanced in order to improve the mechanical stability of soft coal. Consequently, the instantaneous released gases will be decelerated, and the occurrences of coal and gas outburst events in mine working faces can be prevented.


Sign in / Sign up

Export Citation Format

Share Document