The effect of thermal processing and different concentrations of resistant starch on X-ray pattern, crystallization kinetics and morphological properties of noodles supplemented with wheat and corn resistant starch

2019 ◽  
Vol 13 (4) ◽  
pp. 3149-3161 ◽  
Author(s):  
Kiana Pourmohammadi ◽  
Elahe Abedi ◽  
Mohammad Javad Amiri ◽  
Mohammad Hussein Daneshgar ◽  
Luisa Torri
2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarth R ◽  
Sudha A P ◽  
Sujatha B ◽  
Sowmya Lakshmi K

The phytosynthesis of n-type Cadmium Oxide Nanoparticles reduces the toxicity of the substance and makes it Eco-friendly. This Eco-friendly biosynthesis of CdO NPs was synthesized for the first time from the Queen of herbs, Ocimum Sanctum (holy basil).The biosynthesized Cadmium oxide was prepared using Ocimum leaf extract as a reductant and Cadmium Chloride and hydroxide as cadmium and oxide source materials by Co- Precipitation method. Thus obtained Cadmium Oxide Nanoparticles were characterized by different techniques such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM),Energy dispersive X-ray spectroscopy(EDS) to study the structural and morphological properties. XRD pattern exhibited the formation of face centered cubic structure of CdO NPs with an average crystalline size of 11.5nm .The chemical bond formation of CdO NPs were confirmed by FTIR spectrum in the range of (400-4000cm-1). The SEM micrographs revealed the predominant formation of Cauliflower shape with a particle size in the range of 61-142nm. The high purity of the biosynthesized nanoparticles were confirmed by EDS analysis. Further it was tested against gram positive and gram negative bacterial strains and showed significant antibacterial activity. This biosynthetic research study opens an innovative window to progress our understanding of how CdO NPs shows resistance to different bacterial strains.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2212
Author(s):  
Worawat Poltabtim ◽  
Ekachai Wimolmala ◽  
Teerasak Markpin ◽  
Narongrit Sombatsompop ◽  
Vichai Rosarpitak ◽  
...  

The potential utilization of wood/polyvinyl chloride (WPVC) composites containing an X-ray protective filler, namely bismuth oxide (Bi2O3) particles, was investigated as novel, safe, and environmentally friendly X-ray shielding materials. The wood and Bi2O3 contents used in this work varied from 20 to 40 parts per hundred parts of PVC by weight (pph) and from 0 to 25, 50, 75, and 100 pph, respectively. The study considered X-ray shielding, mechanical, density, water absorption, and morphological properties. The results showed that the overall X-ray shielding parameters, namely the linear attenuation coefficient (µ), mass attenuation coefficient (µm), and lead equivalent thickness (Pbeq), of the WPVC composites increased with increasing Bi2O3 contents but slightly decreased at higher wood contents (40 pph). Furthermore, comparative Pbeq values between the wood/PVC composites and similar commercial X-ray shielding boards indicated that the recommended Bi2O3 contents for the 20 pph (40 ph) wood/PVC composites were 35, 85, and 40 pph (40, 100, and 45 pph) for the attenuation of 60, 100, and 150-kV X-rays, respectively. In addition, the increased Bi2O3 contents in the WPVC composites enhanced the Izod impact strength, hardness (Shore D), and density, but reduced water absorption. On the other hand, the increased wood contents increased the impact strength, hardness (Shore D), and water absorption but lowered the density of the composites. The overall results suggested that the developed WPVC composites had great potential to be used as effective X-ray shielding materials with Bi2O3 acting as a suitable X-ray protective filler.


2019 ◽  
Vol 15 (S356) ◽  
pp. 295-298
Author(s):  
Betelehem Bilata-Woldeyes ◽  
Mirjana Pović ◽  
Zeleke Beyoro-Amado ◽  
Tilahun Getachew-Woreta ◽  
Shimeles Terefe

AbstractStudying the morphology of a large sample of active galaxies at different wavelengths and comparing it with active galactic nuclei (AGN) properties, such as black hole mass (MBH) and Eddington ratio (λEdd), can help us in understanding better the connection between AGN and their host galaxies and the role of nuclear activity in galaxy formation and evolution. By using the BAT-SWIFT hard X-ray public data and by extracting those parameters measured for AGN and by using other public catalogues for parameters such as stellar mass (M*), star formation rate (SFR), bolometric luminosity (Lbol), etc., we studied the multiwavelength morphological properties of host galaxies of ultra-hard X-ray detected AGN and their correlation with other AGN properties. We found that ultra hard X-ray detected AGN can be hosted by all morphological types, but in larger fractions (42%) they seem to be hosted by spirals in optical, to be quiet in radio, and to have compact morphologies in X-rays. When comparing morphologies with other galaxy properties, we found that ultra hard X-ray detected AGN follow previously obtained relations. On the SFR vs. stellar mass diagram, we found that although the majority of sources are located below the main sequence (MS) of star formation (SF), still non-negligible number of sources, with diverse morphologies, is located on and/or above the MS, suggesting that AGN feedback might have more complex influence on the SF in galaxies than simply quenching it, as it was suggested in some of previous studies.


1997 ◽  
Vol 485 ◽  
Author(s):  
Chih-hung Chang ◽  
Billy Stanbery ◽  
Augusto Morrone ◽  
Albert Davydov ◽  
Tim Anderson

AbstractCuInSe2 thin films have been synthesized from binary precursors by Rapid Thermal Processing (RTP) at a set-point temperature of 290°C for 70 s. With appropriate processing conditions no detrimental Cu2-xSe phase was detected in the CIS films. The novel binary precursor approach consisted of a bilayer structure of In-Se and Cu-Se compounds. This bilayer structure was deposited by migration enhanced physical vapor deposition at a low temperature (200°C) and the influence of deposition parameters on the precursor film composition was determined. The bilayer structure was then processed by RTP and characterized for constitution by X-ray diffraction and for composition by Wavelength Dispersive X-ray Spectroscopy.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Khalil Ibrahim ◽  
Mohammad Moumani ◽  
Salsabeela Mohammad

A combined process is proposed for the utilization of local kaolin to produce alumina particles. The applied process is made in two stages: calcination at 700 °C with sodium chloride and leaching with sulfuric followed by hydrochloric acids. The optimal extraction efficiency can be obtained when the conditions are as follows: leaching temperature is at 140 °C, leaching time is 3 h 45 min and concentration of sulfuric acid is 40 wt.%. The results show that the purity of alumina reaches 79.28%, which is suitable for the production of aluminum metal. It is evident that this method of extraction of alumina from the kaolin ash is practical and feasible. The structural and morphological properties of the calcined microcrystalline powder was characterized by X-ray diffraction and scanning electron microscope (SEM).


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 406 ◽  
Author(s):  
M. Robles-Águila ◽  
J. Luna-López ◽  
Álvaro Hernández de la Luz ◽  
J. Martínez-Juárez ◽  
M. Rabanal

Zinc oxide is one of the most important semiconducting metal oxides and one of the most promising n-type materials, but its practical use is limited because of both its high thermal conductivity and its low electrical conductivity. Numerous studies have shown that doping with metals in ZnO structures leads to the modification of the band gap energy. In this work, Al-doped ZnO, Ni-doped ZnO, and undoped ZnO nanocrystalline powders were prepared by a sol–gel method coupled with ultrasound irradiation, and the results show the influence of Al3+ and Ni2+ ions in the ZnO network. The doping concentrations in ZnO of 0.99 atom % for ZnO–Al and 0.80 atom % for ZnO–Ni were obtained by X-ray Fluorescence (XRF). X-ray Diffraction (XRD) and Raman Spectroscopy showed a decreased intensity and broadening of main peaks, indicating metallic ions. The crystallite size of the sample was decreased from 24.5 nm (ZnO) to 22.0 nm (ZnO–Al) and 21 nm (ZnO–Ni). The textural and morphological properties were analyzed via Nitrogen Adsorption (BET method) and Field Emission Scanning Electron Microscopy (FESEM).


Author(s):  
С.Н. Гарибова ◽  
А.И. Исаев ◽  
С.И. Мехтиева ◽  
С.У. Атаева ◽  
Р.И. Алекперов

Specifics of "amorphous state - crystal" phase transitions in dependence on the samples obtaining method and thermal processing, as well as changes in the structure and close range order in the arrangement of the atoms of Ge20Sb20.5Te51 chalcogenide semiconductors have been studied by the x-ray diffraction and Raman spectroscopy. It has been shown that Ge20Sb20.5Te51 films obtained by thermal evaporation on an unheated substrate are amorphous; after heat treatment at 220 and 400 °C, transform into a crystalline phase with a cubic and hexagonal structure. The chemical bonds and the main structural elements that form the matrix of the investigated objects, as well as the changes that occur in them during heat treatment, have been determined.


2015 ◽  
Vol 2 (1) ◽  
pp. 15-17
Author(s):  
Indira J

Hydroxyapatite (HAP) nanoparticles with uniform morphologies and controllable size have been synthesized by template directed method. The environment and eco-friendly polysaccharide soluble starch is used as a template to regulate size and shape of the nanoparticles synthesized. Structural and morphological properties of as-synthesized hydroxyapatite nanoparticles have been examined through the techniques like Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Scanning Electron Microscopy(SEM), respectively. The results indicate that the obtained particles are uniform discrete spherical nanoparticles. The average size of the hydroxyapatite nanoparticles were ranged from 45 to 60 nm.


2011 ◽  
Vol 43 (1) ◽  
pp. 105-112
Author(s):  
Z.G. Zhang ◽  
X.F. Wang ◽  
Q.Q. Tian

Bismuth silicate micro-crystals with grain array structure were prepared by sintering method under atmosphere pressure. The samples were characterized for structural and surface morphological properties by X-ray diffraction (XRD) and Environmental scanning electron microscopy (ESEM). The result shows that stable grain arrays grow by iterative mode. If a stable grain array eliminates, a new stable grain array will generate. In a stable parent array, an offspring array may generate after the corresponding partial elimination of its parent array. If one part of an offspring array stops growing, it will be as a new parent array, and then its offspring grain array will create. The sum of the lengths of an offspring array and the corresponding eliminated part of its parent array is equal to the length of the next eliminated part of its parent array. It means the growth rate of an offspring array is equal to that of the corresponding survived part of its parent array. There is a highly correlation between grain array length and average grain line spacing. It means that larger average grain line spacing corresponds to the stable grain array with lager length. When average grain line spacing increases 1?m, the corresponding array length will increase approximately 7.6?m.


Sign in / Sign up

Export Citation Format

Share Document