On ramification index of composition of complete discrete valuation fields

2020 ◽  
Vol 130 (1) ◽  
Author(s):  
Pasupulati Sunil Kumar
Keyword(s):  
1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


1988 ◽  
Vol 31 (3) ◽  
pp. 469-474
Author(s):  
Robert W. van der Waall

Let K be a field, G a finite group, V a (right) KG-module. If H is a subgroup of G, then, restricting the action of G on V to H, V is also a KH-module. Notation: VH.Suppose N is a normal subgroup of G. The KN-module VN is not irreducible in general, even when V is irreducible as KG-module. A part of the well-known theorem of A. H. Clifford [1, V.17.3] yields the following.


2008 ◽  
Vol 60 (3) ◽  
pp. 532-555 ◽  
Author(s):  
Pete L. Clark ◽  
Xavier Xarles

AbstractWe say that an abelian variety over a p-adic field K has anisotropic reduction (AR) if the special fiber of its Néronminimal model does not contain a nontrivial split torus. This includes all abelian varieties with potentially good reduction and, in particular, those with complex or quaternionic multiplication. We give a bound for the size of the K-rational torsion subgroup of a g-dimensional AR variety depending only on g and the numerical invariants of K (the absolute ramification index and the cardinality of the residue field). Applying these bounds to abelian varieties over a number field with everywhere locally anisotropic reduction, we get bounds which, as a function of g, are close to optimal. In particular, we determine the possible cardinalities of the torsion subgroup of an AR abelian surface over the rational numbers, up to a set of 11 values which are not known to occur. The largest such value is 72.


2017 ◽  
Vol 13 (08) ◽  
pp. 2007-2038
Author(s):  
Sebastian Pauli ◽  
Brian Sinclair

We give an algorithm that constructs a minimal set of polynomials defining all extensions of a [Formula: see text]-adic field with given inertia degree, ramification index, discriminant, ramification polygon, and residual polynomials of the segments of the ramification polygon.


1963 ◽  
Vol 7 (4) ◽  
pp. 566-581 ◽  
Author(s):  
M. Auslander ◽  
D. S. RIM
Keyword(s):  

1996 ◽  
Vol 07 (02) ◽  
pp. 211-225 ◽  
Author(s):  
L. LEMAIRE ◽  
J.C. WOOD

Carrying further the work of T.A. Crawford, we show that each component of the space of harmonic maps from the 2-sphere to complex projective 2-space of degree d and energy 4πE is a smooth closed submanifold of the space of all Cj maps (j≥2). We achieve this by showing that the Gauss transform which relates them to spaces of holomorphic maps of given degree and ramification index is smooth and has injective differential.


Author(s):  
Natalya K. Vlaskina ◽  
◽  
Sergei V. Vostokov ◽  
Petr N. Pital’ ◽  
Aleksey E. Tsybyshiev ◽  
...  

In this paper we investigate the irregular degree of finite not ramified local field extantions with respect to a polynomial formal group and in the multiplicative case. There was found necessary and sufficient conditions for the existence of primitive roots of ps power from 1 and (endomorphism [ps]Fm) in L-th unramified extension of the local field K (for all positive integer s). These conditions depend only on the ramification index of the maximal abelian subextension of the field K Ka/Qp.


1979 ◽  
Vol 31 (2) ◽  
pp. 300-303
Author(s):  
Eugene Spiegel ◽  
Allan Trojan

Let K be a field. The Schur subgroup, S(K), of the Brauer group, B(K), consists of all classes [△] in B(K) some representative of which is a simple component of one of the semi-simple group algebras, KG, where G is a finite group such that char K ∤ G. Yamada ([11], p. 46) has characterized S(K) for all finite extensions of the p-adic number field, Qp. If p is odd, [△] ∈ S(K) if and only ifwhere c is the tame ramification index of k/Qp, k the maximal cyclotomic subfield of K, and s = ((p – 1)/c, [K : k]). invp △ is the Hasse invariant. Yamada showed this by proving first that S(K) is the group of classes containing cyclotomic algebras and then determining the invariants of such algebras.


Sign in / Sign up

Export Citation Format

Share Document