Sequential approximate weak optimality conditions for multiobjective fractional programming problems via sequential calculus rules for the Brøndsted-Rockafellar approximate subdifferential

Author(s):  
M. B. Moustaid ◽  
A. Rikouane ◽  
I. Dali ◽  
M. Laghdir
2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Shun-Chin Ho

We study nonsmooth multiobjective fractional programming problem containing local Lipschitz exponentialB-p,r-invex functions with respect toηandb. We introduce a new concept of nonconvex functions, called exponentialB-p,r-invex functions. Base on the generalized invex functions, we establish sufficient optimality conditions for a feasible point to be an efficient solution. Furthermore, employing optimality conditions to perform Mond-Weir type duality model and prove the duality theorems including weak duality, strong duality, and strict converse duality theorem under exponentialB-p,r-invexity assumptions. Consequently, the optimal values of the primal problem and the Mond-Weir type duality problem have no duality gap under the framework of exponentialB-p,r-invexity.


Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3649-3665 ◽  
Author(s):  
Tadeusz Antczak

A new class of nonconvex smooth semi-infinite multiobjective fractional programming problems with both inequality and equality constraints is considered. We formulate and establish several parametric sufficient optimality conditions for efficient solutions in such nonconvex vector optimization problems under (?,?)-V-invexity and/or generalized (?,?)-V-invexity hypotheses. With the reference to the said functions, we extend some results of efficiency for a larger class of nonconvex smooth semi-infinite multiobjective programming problems in comparison to those ones previously established in the literature under other generalized convexity notions. Namely, we prove the sufficient optimality conditions for such nonconvex semi-infinite multiobjective fractional programming problems in which not all functions constituting them have the fundamental property of convexity, invexity and most generalized convexity notions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Tadeusz Antczak ◽  
Najeeb Abdulaleem

Abstract A new class of (not necessarily differentiable) multiobjective fractional programming problems with E-differentiable functions is considered. The so-called parametric E-Karush–Kuhn–Tucker necessary optimality conditions and, under E-convexity hypotheses, sufficient E-optimality conditions are established for such nonsmooth vector optimization problems. Further, various duality models are formulated for the considered E-differentiable multiobjective fractional programming problems and several E-duality results are derived also under appropriate E-convexity hypotheses.


Sign in / Sign up

Export Citation Format

Share Document