scholarly journals The vibrations induced by surface irregularities in road pavements – a Matlab® approach

2013 ◽  
Vol 6 (3) ◽  
pp. 267-275 ◽  
Author(s):  
M. Agostinacchio ◽  
D. Ciampa ◽  
S. Olita

Abstract Purpose The paper tackles the theme of evaluating dynamic load increases that the vehicle transfers to the road pavement, due to the generation of vibration produced by surface irregularities. Method The study starts from the generation, according to the ISO 8608 Standard, of different road roughness profiles characterized by different damage levels. In particular, the first four classes provided by ISO 8608 were considered. Subsequently, the force exchanged between the pavement and three typologies of vehicles (car, bus and truck) has been assessed by implementing, in Matlab®, the QCM (Quarter Car Model) characterized by a quarter vehicle mass and variable speed from 20 to 100 km/h. The analysis allows determining the amount of dynamic overload that causes the vibrational stress. Results/Conclusions The paper shows how this dynamic overload may be predetermined as a function of the pavements surface degradation. This is a useful reference for the purposes of designing and maintaining road pavements.

1997 ◽  
Vol 119 (4) ◽  
pp. 609-611 ◽  
Author(s):  
Junghsen Lieh

This paper studies the effect of optimal damping control suspensions on vehicle ride performance. The gain matrix is developed from second-order equations with the road roughness represented by a stochastic process. With only velocities as the feedback signal, the number of unknowns and measurements is reduced leading to more efficiency in data processing. The control is implemented on a quarter-car model which includes the tire damping effect. The spectral density is compared with those for passive and fully active systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Piotr Krauze ◽  
Jerzy Kasprzyk

The problem of vibration attenuation in a semiactive vehicle suspension is considered. The proposed solution is based on usage of the information about the road roughness coming from the sensor installed on the front axle of the vehicle. It does not need any preview sensor to measure the road roughness as other preview control strategies do. Here, the well-known Skyhook algorithm is used for control of the front magnetorheological (MR) damper. This algorithm is tuned to a quarter-car model of the front part of the vehicle. The rear MR damper is controlled by the FxLMS (Filtered-x LMS) taking advantage of the information about the motion of the front vehicle axle. The goal of this algorithm is to minimize pitch of the vehicle body. The strategy is applied for a four-degree-of-freedom (4-DOF) vehicle model equipped with magnetorheological dampers which were described using the Bouc-Wen model. The suspension model was subjected to the road-induced excitation in the form of a series of bumps within the frequency range 1.0–10 Hz. Different solutions are compared based on the transmissibility function and simulation results show the usefulness of the proposed solution.


2016 ◽  
Vol 823 ◽  
pp. 205-210
Author(s):  
Adrian Ioan Niculescu

The paper presents a complex quarter car model obtained with ADAMS software, View module, useful in the first stage of suspension dimensioning and optimization.The model is equipped with compression and rebound stopper buffer and suspension trim corrector.The proposed quarter car model with two degrees of freedom (wheel and body) performs all these goals allowing changing:Geometrical elementsPosition of equilibrium, depending on vehicle load;Trim correction;Elastic and dissipative characteristics of the suspension and tire;Suspension stroke;Road profile, assessed either by simple or summation of harmonic functions or reproducing real roadsBuffers (for stroke limitation) position and characteristics;The models developed provide information on:Vertical stability assessed by vertical movements of the body and the longitudinal and transversal stability evaluated based on adherence characterized by wheel ground contact force and frequency of soil detachment wheel.Comfort assessed on the basis of body vertical acceleration and collision forces to the stroke ends.The body-road clearanceThe trim corrector efficiencyAll above performances evaluated function the road unevenness, acceleration, deceleration, turning regime.The damping characteristic is defined by damping forces at different speed for each strokes respectively one for rebound and other for compression.The contact force road-wheel is defined based tire rigidity law.The stopper buffer forces on rebound and compression are defined based each specific rigidity characteristics.The road excitation is realized with a function generator.The software allow the model evolution visualisation in real time, also generating the diagrams of displacements, forces, accelerations, speeds, for each elements or for relative evolution between diverse elements.The simulation was realized for unloaded and fully loaded car using a road generated by a sum of harmonic functions presented in equation (8).The excitation covers the specific frequencies area, being under the body frequencies up to the wheel proper frequencies.The realized ¼ car model, have reached the goal to evaluate the suspension trim correction advantages.The simulations confirm the trim corrector increases the suspension performances, thus for the analyzed case the trim corrector increase simultaneous:Body-ground clearance (evaluated by body higher increasing) between 18.5÷55.1 %Body stability (evaluated by maximal body displacement) between 9.8÷11.4 %Body comfort (evaluated by maximal body acceleration) between 3.4÷35.5 %Adherence (evaluated by maximal and RMS wheel-groundcontact force variation) between 7.0÷12.1 %Body and axles protection (evaluated by buffer strike force) between 10.8÷38.2 %


2017 ◽  
Vol 34 (5) ◽  
pp. 1501-1526 ◽  
Author(s):  
Francisco Duarte ◽  
Adelino Ferreira ◽  
Paulo Fael

Purpose This paper aims to deal with the development of a software tool to simulate and study vehicle – road interaction (VRI) to quantify the forces induced and energy released from vehicles to the road pavement, in different vehicle motion scenarios, and the energy absorbed by the road surface, speed reducers or a specific energy harvester surface or device. The software tool also enables users to quantify the energetic efficiency of the process. Design/methodology/approach Existing software tools were analysed and its limitations were identified in terms of performing energetic analysis on the interaction between the vehicle and the road pavement elements, such as speed reducers or energy harvest devices. The software tool presented in this paper intends to overcome those limitations and precisely quantify the energy transfer. Findings Different vehicle models and VRI models were evaluated, allowing to conclude about each model precision: bicycle car model has a 60 per cent higher precision when compared with quarter-car model, and contact patch analysis model has a 67 per cent higher precision than single force analysis model. Also, a technical study was performed for different equipment surface shapes and displacements, concluding that these variables have a great influence on the energy released by the vehicle and on the energy harvested by the equipment surface. Originality/value The developed software tool allows to study VRI with a higher precision than existing tools, especially when energetic analyses are performed and when speed reduction or energy harvesting devices are applied on the pavement.


2010 ◽  
Vol 159 ◽  
pp. 35-40
Author(s):  
Zhong Hong Dong

To study the dynamic wheel load on the road, a dynamic multi-axle vehicle mode has been developed, which is based on distribute loading weight and treats tire stiffness as the function of tire pressure and wheel load. Taking a tractor-semitrailer as representative, the influence factors and the influence law of the dynamic load were studied. It is found that the load coefficient increases with the increase of road roughness, vehicle speed and tire pressure, yet it decreases with the increase of axle load. Combining the influences of road roughness, vehicle speed, axle load and tire pressure, the dynamic load coefficient is 1.14 for the level A road, 1.19 for the level B road, 1.27 for the level C road, and 1.36 for the level D road.


2021 ◽  
Vol 6 (166) ◽  
pp. 130-133
Author(s):  
H. Sarkisian ◽  
V. Tymoshevskyi ◽  
S. Urdzik

Most of the transport and operational indicators that directly affect the road roughness depend on the roughness of coverage. Therefore, the control and timely monitoring of the road roughness is an extremely important issue that needs the attention of road maintenance services. At monitoring of the road roughness it is most expedient to use a technique of leveling of a covering. The method of leveling the coating provides more detailed information about the coating and allows you to determine the smallest deformations on the road coating, which may be at the first stage of their development, especially at that stage of their development, and show roughness and various parameters. One of the main tasks of measurements in the process of performing geodetic works is not only to obtain the measurement result, but also to assess its reliability. The required quality of instrumental measurement can not be achieved without adhering to the principles of unity and the required accuracy of measurements, so much attention should be paid to the metrological support of geodetic works. The purpose of this article is to analyze the metrological support of geodetic works in determining the pavement roughness and substantiation of the required accuracy of measuring the non-rigid pavement roughness. On the basis of dependences for determining the coefficient of dynamic load on pavement and the correlation between the pavement roughness and the coefficient of dynamic load and on the basis of experimental data, the necessary accuracy of measuring the non-rigid pavement roughness is substantiated. Based on the analysis, it was found that the accuracy of determining the height of the irregularities should not exceed 0.5 mm, for which it is necessary to use optical or electron-optical levels.


Transport ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 193-203 ◽  
Author(s):  
Bohuš Leitner ◽  
Martin Decký ◽  
Matúš Kováč

One of the requirements concerning pavement quality is the evenness of its surface. Pavement unevenness has a random character and has an adverse influence to rolling resistance, tyre–pavement coherence, safety and the driving comfort. Knowledge of “longitudinal unevenness” has been long recognized as an important criteria of road performance, not only for safety by causing vehicle vibrations and affecting ride comfort but also as a major factor in pavement deterioration and working conditions of vehicles. The paper presents two original devices for the measurement of pavement longitudinal unevenness designed as a reaction to results and experiences gathered from a few years’ research activities, measurements and evaluations of road pavement evenness carried out in the authors' work place (University of Žilina – UNIZA). The first equipment has been designed as a single-wheel trailing vehicle and has been constructed on the Double-mass Measuring Set (DMS) principle and it is referred to as UNIZA single-wheel vehicle JP VSDS. The main reason for designing the device were authors’ findings that the reference quarter car model (used for calculation of International Roughness Index – IRI) can provide evaluation, which can be in contradiction with ride safety. This fact is determined by overvaluation of the short wavelengths and undervaluation the longer wavelengths by reference model. The second one is a profiler with very high resolution of surface scanning using mathematical models for unevenness evaluation. The device is referred to as Dynamic Road Scanner (DRS). The reason for designing of this equipment was in the first place insufficient repeatability of transversal unevenness measurements of device used by Slovak Road Administration, but for the purpose of correctness and measurements accuracy verifying were also results of longitudinal unevenness measurements compared. The paper presents results of evaluation by international established dynamic quantifiers of longitudinal unevenness based on measurements performed by these devices on three selected road sections in Slovakia. In the next part of the paper are compared IRI values obtained by mathematical calculations using reference quarter car model “driving” on road section profile measured by geodetic survey with IRI values obtained by conversion of the unevenness degree C (measured by UNIZA single-wheel vehicle JP VSDS) and IRI values measured by profilometer DRS.


2008 ◽  
Vol 13 (7) ◽  
pp. 1373-1383 ◽  
Author(s):  
Grzegorz Litak ◽  
Marek Borowiec ◽  
Michael I. Friswell ◽  
Kazimierz Szabelski

2012 ◽  
Vol 256-259 ◽  
pp. 1742-1747
Author(s):  
Fukada Saiji ◽  
Matsumoto Takeya ◽  
Aiba Tadakazu ◽  
Okada Hiroyuki ◽  
Momiyama Yoshiyuki

When a truck passes on the expansion joint of an expressway bridge, the tire spring vibration of the truck is generated by short wavelength road roughness. Moreover, environmental vibration problems, such as infrasound and ground vibration, occur as a result of the impact force of the tire spring vibration. Then, IRI_10 analysis using a quarter car model was carried out using short wavelength road roughness in the expansion joints of Japanese expressways. This study proposed the IRI_10 value '7 mm/m' and an estimation method for repairing short wavelength road roughness.


2011 ◽  
Vol 311-313 ◽  
pp. 1182-1185
Author(s):  
Jie Li ◽  
Ai Hua Zhu ◽  
Heng Zeng ◽  
Jun Peng Li

In order to improve the road-friendliness of vehicle, this paper studies vehicle dynamic performance through establishing car model in ADAMS, hybrid control strategy in SIMULINK and the use of joint simulation technology. By using dynamic load coefficient and the road-friendliness index of dynamic load stress factor evaluate the road-friendliness of the semi-active suspension system with hybrid control strategy. The research shows that the road-friendliness will be better when the damping force distribution coefficient for 0.2 ~ 0.6.


Sign in / Sign up

Export Citation Format

Share Document